风控模型基本概念和方法

风控模型基本概念和方法每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~———————————————————————————本笔记源于CDA-DSC课程,由常国珍老师主讲。该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营———————…

大家好,又见面了,我是你们的朋友全栈君。

每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~风控模型基本概念和方法

———————————————————————————

本笔记源于CDA-DSC课程,由常国珍老师主讲。该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营

风控模型基本概念和方法

——————————————————————————————————————————

一、风控建模流程以及分类模型建设

1、建模流程

该图源自课程讲义。主要将建模过程分为了五类。数据准备、变量粗筛、变量清洗、变量细筛、建模与实施。

风控模型基本概念和方法

2、分类模型种类与区别

风控与其他领域一样,分类模型主要分为两大类:排序类、决策类、标注类(文本、自然语言处理)。

风控模型基本概念和方法

一般来说风控领域在意的是前两个模型种类,排序类以及决策类。

其中:巴塞尔协议定义了金融风险类型:市场风险、作业风险、信用风险。信用风险ABC模型有进件申请评分、行为评分、催收评分。

模型 解释 复杂度 应用场景
Logistics回归 影响程度大小与显著性,解释力度强,但只是线性,没有顾及到非线性,预测精度较低 申请评分、流失预测
决策树 1、描述性,重建用户场景,可做变量提取与用户画像 叶子的数量 流失模式识别
2、树的结构不稳定,可以得出变量重要性,可以作为变量筛选
随机森林 随机森林比决策树在变量筛选中,变量排序比较优秀
神经网络 1、不可解释,内部使用,预测精度较高。可以作为初始模型的金模型(用以评估在给定数据条件下,逻辑回归可达到的最精确程度)
2、线性(逻辑回归)+非线性关系,可用于行为评分的预测模型(行为评分对模型可解释性不强),可用于申请评分的金模型
3、使用场景:先做一个神经网络,让预测精度(AUC)达到最大时,再用逻辑回归
迭代次数 申请评分的金模型;
行为评分的预测模型

(1)信用风险——申请信用评分

申请评分可以将神经网络+逻辑回归联合使用。

《公平信用报告法》制约,强调评分卡的可解释性。所以初始评分(申请评分)一般用回归,回归是解释力度最大的。

神经网络可用于银行行为评级以及不受该法制约监管的业务(P2P)。其次,神经也可以作为申请信用评分的金模型。

金模型的使用:一般会先做一个神经网络,让预测精度(AUC)达到最大时,再用逻辑回归。

建模大致流程:

一批训练集+测试集+一批字段——神经网络建模看AUC——如果额定的AUC在85%,没超过则返回重新筛选训练、测试集以及字段;

超过则,可以后续做逻辑回归。

(2)信用风险——行为评分

行为评分建模:行为信用评级不需要解释性,所以可以用非线性的神经网络。

——————————————————————————————————————————

二、分类模型评估体系

上述将分类模型做了归纳,不同的分类模型所采用的评估体系不同。

决策类:准确率/误分率、利润/成本

排序类:ROC指标(一致性)、Gini指数、KS统计量、提升度

1、决策类评估——混淆矩阵指标

混淆矩阵,如图:其中这些指标名称在不同行业有不同的名称解释

风控模型基本概念和方法

正确率=(A+D)/(A+B+C+D)

灵敏度(覆盖率、召回率)=A/(A+B)

命中率(PV+)=A/(A+C)

特异度(负灵敏度、负覆盖率)=D/(C+D)

负命中率(PV-)=D/(D+B)

在以上几个指标中不同行业看中不同的指标:

(1)灵敏度/召回率/覆盖率(——相对于命中率)

譬如灵敏度(召回率)这一指标就比正确率要重要,覆盖率(Recall)这个词比较直观,在数据挖掘领域常用。因为感兴趣的是正例(positive),比如在信用卡欺诈建模中,我们感兴趣的是有高欺诈倾向的客户,那么我们最高兴看到的就是,用模型正确预测出来的欺诈客户(True Positive)cover到了大多数的实际上的欺诈客户,覆盖率,自然就是一个非常重要的指标。

(2)命中率(——相对于覆盖率)

欺诈分析中,命中率(不低于20%),看模型预测识别的能力。

在数据库营销里,你预测到b+d个客户是正例,就给他们邮寄传单发邮件,但只有其中d个会给你反馈(这d个客户才是真正会响应的正例),这样,命中率就是一个非常有价值的指标。 以后提到这个概念,就表示为PV+(命中率,Positive Predicted Value)*。

2、排序类指标评估

ROC指标(一致性)、Gini指数(洛伦兹曲线)、KS统计量、提升度四类指标。

风控模型基本概念和方法

(1)ROC曲线

对角线模型,最差,风控喜欢的指标。由决策类指标的灵敏度(召回率/覆盖率)与特异度(负灵敏度、负召回率)来构造。

求覆盖率等指标,需要指定一个阈值(threshold)。随着阈值的减小,灵敏度和1-特异度也相应增加(也即特异度相应减少)。

基于不同的阈值而产生的一系列灵敏度和特异度描绘到直角坐标上,就能更清楚地看到它们的对应关系。把sensitivity和1-Specificity描绘到同一个图中,它们的对应关系,就是传说中的ROC曲线,全称是receiver operating characteristic curve,中文叫“接受者操作特性曲线”。

AUC值,为了更好的衡量ROC所表达结果的好坏,Area Under Curve(AUC)被提了出来,简单来说就是曲线右下角部分占正方形格子的面积比例。该比例代表着分类器预测精度。(R语言︱ROC曲线——分类器的性能表现评价

(2)累积提升曲线

营销最好的图,很简单。它衡量的是,与不利用模型相比,模型的预测能力“变好”了多少(分类模型评估——混淆矩阵、ROC、Lift等)。

将概率从大到小铺开x,提升度可以有一些“忽悠”的成本,哈哈~可以微调,可以自己调节提升度的区间

(3)K-S曲线

风控喜欢的指标。K-S曲线的最大值代表K-S统计量。

风控模型基本概念和方法

(4)洛伦兹曲线gini

风控喜欢的指标,TP率给了一个累积比,跟提升度差不多。

——————————————————————————————————————————

三、信用风险模型检测

监测可以分为前端、后端监控。

风控模型基本概念和方法

前端监控,授信之前,别的客户来了,这个模型能不能用?

后端监控,建模授信之后,打了分数,看看一年之后,分数是否发生了改变。

1、前端监控

长期使用的模型,其中的变量一定不能波动性较大。比如,收入这个指标,虽然很重要,但是波动性很大,不适合用在长期建模过程中。

如果硬要把收入放到模型之中,要放入收入的百分位制(排名)。

风控模型基本概念和方法

2、后端监控

主要监控模型的正确性以及变量选择的有效性。出现了不平滑的问题,需要重新考虑

风控模型基本概念和方法

风控模型基本概念和方法

每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~风控模型基本概念和方法

———————————————————————————

                </div>
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/131174.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Vue(4)Vue指令的学习1[通俗易懂]

    Vue(4)Vue指令的学习1[通俗易懂]前言Vue官网一共有提供了14个指令,分别如下v-textv-htmlv-showv-if☆☆☆v-else☆☆☆v-else-if☆☆☆v-for☆☆☆v-on☆☆☆v

    2022年8月7日
    6
  • Linux traceroute 命令详解

    Linux traceroute 命令详解traceroute命令Linux中traceroute命令用于显示数据包到目的主机的路径Windows中路由追踪命令是tracert。traceroute指令可以追踪你发送的数据包在网络中传输的路由途径,主要显示走了什么路,到了什么站。其预设的数据包大小是40bytes,该值可以另设。语法:traceroute【参数】【主机】举个简单例子:traceroute-dww…

    2025年8月11日
    2
  • 生产管理软件的使用对生产效率的影响_新华erp生产管理软件

    生产管理软件的使用对生产效率的影响_新华erp生产管理软件生产计划除了为生产部门提供生产制造的依据,还关系采购计划、安全库存、订单交付等各环节,管理起来十分复杂。一款好用的生产计划管理软件,不仅能全面集成生产相关的业务流程,确保生产计划顺畅进行,还能大大提升生产效率,降低经营管理成本,对提高生产型企业生产力和竞争力的作用显而易见。下面就用实例给大家说说,真正好用的生产计划管理软件,到底能给企业带来哪些好处。   生产计划管理软件:实现生产、业务数据

    2022年10月4日
    2
  • Hackbar PJ

    Hackbar PJ前言:今天准备用hackbar时,竟然收费了,于是上网搜索如何破解,这里教给大家方法:不管Mac还是Windows,方法都一样,就是要找到hackbar的安装路径,修改其内部hackbar-panel.js的配置文件步骤:这里我以Windows为例访问路径:C:\Users\你的用户名\AppData\Local\Google\Chrome\UserData\…

    2022年4月30日
    78
  • centos下安装python3详细教程

    centos下安装python3详细教程centos7自带有python,版本是python2.7接下来我们手动安装python3,并且配置后可以并存使用。1.首先,你要知道系统现在的python的位置在哪儿:[root@root~]#whereispythonpython:/usr/bin/python2.7/usr/bin/python/usr/lib/python2.7/usr/lib64/pyt…

    2022年6月15日
    26
  • 扩展卡尔曼滤波算法及仿真实例[通俗易懂]

    扩展卡尔曼滤波算法及仿真实例[通俗易懂]在阅读本篇博客之前希望读者已经具备线性卡尔曼滤波器的基础,或者提前研读我的前一篇关于线性卡尔曼滤波器的文章:线性卡尔曼滤波算法及示例。下面不说废话,直奔主题了。一、扩展卡尔曼滤波器(EKF)理论基础扩展Kalman滤波器算法实质上是一种在线线性化技术,即安装估计轨道进行线性化处理—-泰勒级数展开,再进行线性的Kalman滤波。实际非线性滤波处理,通常对过程噪声和观测噪声近似为高斯分布,…

    2022年6月22日
    103

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号