深度学习环境配置2——windows下的torch=1.2.0环境配置「建议收藏」

深度学习环境配置2——windows下的torch=1.2.0环境配置「建议收藏」神经网络学习小记录48——windows下的torch=1.2.0环境配置学习前言环境内容Anaconda安装下载Cudnn和CUDA配置torch环境安装VSCODE学习前言好多人问环境怎么配置,还是出个教程吧。环境内容torch:1.2.0torchvision:0.4.0Anaconda安装最新版本的Anaconda没有VSCODE,如果大家为了安装VSCODE方便可以直接安装旧版的Anaconda,百度网盘连接如下。也可以装新版然后分开装VSCODE。链接:https://pan

大家好,又见面了,我是你们的朋友全栈君。

注意事项

一、2021/9/11更新

安装CUDA前需要安装Visual Studio,我安装的版本为Visual Studio 2017,视频与视频中未提及,请小伙伴们注意。

30系列显卡不适合该教程,30系列显卡仅支持CUDA11.0,可以参考博客https://blog.csdn.net/weixin_44791964/article/details/120668551进行配置。

博文中显示的安装环境为tensorflow,这是因为我讲pytorch和tensorflow装在一起了,所以不用管,大家自己安装激活的环境是pytorch。

二、2021/7/8更新

许多粉丝反馈,报TypeError: array() takes 1 positional argument but 2 were given错误,可以修改pillow版本解决。

pip install pillow==8.2.0

学习前言

好多人问环境怎么配置,还是出个教程吧。

pytorch-cpu版本的环境配置博客为https://blog.csdn.net/weixin_44791964/article/details/120655098
在这里插入图片描述

环境内容

torch:1.2.0
torchvision:0.4.0

环境配置

一、Anaconda安装

Anaconda的安装主要是为了方便环境管理,可以同时在一个电脑上安装多种环境,不同环境放置不同框架:pytorch、tensorflow、keras可以在不同的环境下安装,只需要使用conda create –n创建新环境即可。

1、Anaconda的下载

同学们可以选择安装新版Anaconda和旧版的Anaconda,安装步骤没有什么区别。

旧版本anaconda的下载:
新版本的Anaconda没有VSCODE,如果大家为了安装VSCODE方便可以直接安装旧版的Anaconda,百度网盘连接如下。也可以装新版然后分开装VSCODE。
链接: https://pan.baidu.com/s/12tW0Oad_Tqn7jNs8RNkvFA 提取码: i83n

新版本anaconda的下载:
如果想要安装最新的Anaconda,首先登录Anaconda的官网:https://www.anaconda.com/distribution/。直接下载对应安装包就可以。
在这里插入图片描述
在这里插入图片描述
一般是下载64位的,下载完成后打开。

2、Anaconda的安装

在这里插入图片描述
选择安装的位置,可以不安装在C盘。
在这里插入图片描述
我选择了Add Anaconda to my PATH environment variable,这样会自动将anaconda装到系统的环境变量中,配置会更加方便一些。
在这里插入图片描述
等待安装完之后,Anaconda的安装就结束了。

二、Cudnn和CUDA的下载和安装

我这里使用的是torch=1.2.0,官方推荐的Cuda版本是10.0,因此会用到cuda10.0,与cuda10.0对应的cudnn是7.4.1。

1、Cudnn和CUDA的下载

网盘下载:
链接: https://pan.baidu.com/s/1znYSRDtLNFLufAuItOeoyQ
提取码: 8ggr

官网下载:
cuda10.0官网的地址是:
cuda10.0官网地址
cudnn官网的地址是:需要大家进去后寻找7.4.1.5。
cudnn官网地址

下载完之后得到这两个文件。
在这里插入图片描述
在这里插入图片描述

2、Cudnn和CUDA的安装

下载好之后可以打开exe文件进行安装。
在这里插入图片描述
这里选择自定义。
不
然后直接点下一步就行了。
在这里插入图片描述
安装完后在C盘这个位置可以找到根目录。
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
然后大家把Cudnn的内容进行解压。
在这里插入图片描述
把这里面的内容直接复制到C盘的根目录下就可以了。
在这里插入图片描述

三、配置torch环境

1、pytorch环境的创建与激活

Win+R启动cmd,在命令提示符内输入以下命令:

conda create –n pytorch python=3.6
activate pytorch

这里一共存在两条指令:
前面一条指令用于创建一个名为pytorch的环境,该环境的python版本为3.6。
后面一条指令用于激活一个名为pytorch的环境。

2、pytorch库的安装

由于我们所有的操作都要在对应环境中进行,所以在进行库的安装前需要先激活环境。

activate pytorch 

此时cmd窗口的样子为:
在这里插入图片描述

a、官方推荐安装方法(推荐)

打开pytorch的官方安装方法:
https://pytorch.org/get-started/previous-versions/
官网推荐的安装代码如下,我使用的是Cuda10的版本,不太懂为什么要写3个=才能正确定位,两个=会定位到cuda92的whl:

# CUDA 10.0
pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

这是pytorch官方提供的指令,用于安装torch和torchvision。

b、先下载whl后安装

需要注意的是,直接这样安装似乎特别慢,因此我们可以进入如下网址:
https://download.pytorch.org/whl/torch_stable.html
找到自己需要的轮子下载。下载的时候使用迅雷下载就行了,速度还是比较快的!
在这里插入图片描述
在这里插入图片描述
下载完成后找到安装路径:
在这里插入图片描述
在cmd定位过来后利用文件全名进行安装就行了!
在这里插入图片描述
这里我也传一个百度网盘的版本。
链接: https://pan.baidu.com/s/14-QVk7Kb_CVwaVZxVPIgtw
提取码: rg2e
全部安装完成之后重启电脑。

3、其它依赖库的安装

但如果想要跑深度学习模型,还有一些其它的依赖库需要安装。具体如下:

scipy==1.2.1
numpy==1.17.0
matplotlib==3.1.2
opencv_python==4.1.2.30
torch==1.2.0
torchvision==0.4.0
tqdm==4.60.0
Pillow==8.2.0
h5py==2.10.0

如果想要更便捷的安装可以在桌面或者其它地方创建一个requirements.txt文件,复制上述内容到txt文件中。
在这里插入图片描述
使用如下指令安装即可。下述指令中,requirements.txt前方的路径是我将文件放在桌面的路径,各位同学根据自己的电脑修改。

pip install -r C:\Users\33232\Desktop\requirements.txt

4、安装较慢请注意换源

需要注意的是,如果在pip中下载安装比较慢可以换个源,可以到用户文件夹下,创建一个pip文件夹,然后在pip文件夹里创建一个txt文件。
在这里插入图片描述
修改txt文件的内容,并且把后缀改成ini

[global]
index-url = http://pypi.mirrors.ustc.edu.cn/simple
[install]
use-mirrors =true
mirrors =http://pypi.mirrors.ustc.edu.cn/simple/
trusted-host =pypi.mirrors.ustc.edu.cn

在这里插入图片描述
在这里插入图片描述
全部安装完成之后重启电脑。

四、安装VSCODE

我个人喜欢VSCODE,所以就安装它啦。其它的编辑软件也可以,个人喜好罢了。

1、下载安装包安装(推荐)

最新版本的Anaconda没有VSCODE因此可以直接百度VSCODE进行安装。

a、VSCODE的下载

直接加载VSCODE的官网https://code.visualstudio.com/,点击Download for Windows即可下载。
在这里插入图片描述

b、VSCODE的安装

首先同意协议,点一下步。
在这里插入图片描述
其他里面的几个勾要打起来,因为这样就可以右键文件夹用VSCODE打开,非常方便。下一步。
在这里插入图片描述
继续下一步安装即可。
在这里插入图片描述

安装完成后在左下角更改自己的环境就行了。
在这里插入图片描述

2、anaconda上安装

打开anaconda,切换环境。
在这里插入图片描述
安装VSCODE,安装完就可以launch一下了,之后就可以把VScode固定到任务栏上,方便打开。
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/131945.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • SPPNet总结

    SPPNet总结背景:RCNN使用CNN作为特征提取器,首次使得目标检测跨入深度学习的阶段。但是在RCNN中,因为全连接层的神经元个数是固定的(权重矩阵的维数是固定的),所以采取对于每一个区域候选都需要首先将图片放缩到固定尺寸(227×227),然后为每个区域候选提取CNN特征的方案。这里存在两个瓶颈,第一重复为每个regionproposal提取特征是及其费时的,SelectiveSearch对于每幅图片产生2k左右个regionproposal,也就是意味着一幅图片需要经过2k次完整的CNN计算得到最终的结果。

    2022年5月2日
    44
  • java实现快速排序图解_快速排序图文详解

    java实现快速排序图解_快速排序图文详解快速排序快速排序法介绍图解代码理解快速排序法介绍快速排序(QuickSort)是对冒泡排序的一种改进,基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。图解代码理解publicclassQuickSort{//从小到大排序publicvoidquickSort(intleft,intright,

    2022年10月21日
    1
  • Ubuntu21.04系统安装[通俗易懂]

    Ubuntu21.04系统安装[通俗易懂]Ubuntu21.04系统安装

    2022年10月10日
    0
  • 2018年系统架构设计师上午真题

    2018年系统架构设计师上午真题●在磁盘调度管理中,应先进行移臂调度,再进行旋转调度。假设磁盘移动臂位于21号柱面上,进程的请求序列如下表所示。如果采用最短移臂调度算法,那么系统的响应序列应为( )。(1)A.②⑧③④⑤①⑦⑥⑨B.②③⑧④⑥⑨①⑤⑦C.①②③④⑤⑥⑦⑧⑨D.②⑧③⑤⑦①④⑥⑨●某计算机系统中的进程管理采用三态模型,那么下图所示的PCB(进程控制块)的组织方式采用( ),图中( )。…

    2022年6月1日
    48
  • 使用npm安装yarn命令

    使用npm安装yarn命令’yarn’不是内部或外部命令,也不是可运行的程序或批处理文件。解决方法:全局安装:npminstall-gyarn检查是否安装成功:yarn-v

    2022年5月23日
    66
  • for while循环语句举例python_for循环语句python

    for while循环语句举例python_for循环语句python程序在一般情况下是按顺序执行的。编程语言提供了各种控制结构,允许更复杂的执行路径。循环语句允许我们执行一个语句或语句组多次,下面是在大多数编程语言中的循环语句的一般形式1.循环控制语句在了解循环语句的使用方法之前,我们先来了解几个循环控制语句:1)…

    2022年8月12日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号