深度学习环境配置2——windows下的torch=1.2.0环境配置「建议收藏」

深度学习环境配置2——windows下的torch=1.2.0环境配置「建议收藏」神经网络学习小记录48——windows下的torch=1.2.0环境配置学习前言环境内容Anaconda安装下载Cudnn和CUDA配置torch环境安装VSCODE学习前言好多人问环境怎么配置,还是出个教程吧。环境内容torch:1.2.0torchvision:0.4.0Anaconda安装最新版本的Anaconda没有VSCODE,如果大家为了安装VSCODE方便可以直接安装旧版的Anaconda,百度网盘连接如下。也可以装新版然后分开装VSCODE。链接:https://pan

大家好,又见面了,我是你们的朋友全栈君。

注意事项

一、2021/9/11更新

安装CUDA前需要安装Visual Studio,我安装的版本为Visual Studio 2017,视频与视频中未提及,请小伙伴们注意。

30系列显卡不适合该教程,30系列显卡仅支持CUDA11.0,可以参考博客https://blog.csdn.net/weixin_44791964/article/details/120668551进行配置。

博文中显示的安装环境为tensorflow,这是因为我讲pytorch和tensorflow装在一起了,所以不用管,大家自己安装激活的环境是pytorch。

二、2021/7/8更新

许多粉丝反馈,报TypeError: array() takes 1 positional argument but 2 were given错误,可以修改pillow版本解决。

pip install pillow==8.2.0

学习前言

好多人问环境怎么配置,还是出个教程吧。

pytorch-cpu版本的环境配置博客为https://blog.csdn.net/weixin_44791964/article/details/120655098
在这里插入图片描述

环境内容

torch:1.2.0
torchvision:0.4.0

环境配置

一、Anaconda安装

Anaconda的安装主要是为了方便环境管理,可以同时在一个电脑上安装多种环境,不同环境放置不同框架:pytorch、tensorflow、keras可以在不同的环境下安装,只需要使用conda create –n创建新环境即可。

1、Anaconda的下载

同学们可以选择安装新版Anaconda和旧版的Anaconda,安装步骤没有什么区别。

旧版本anaconda的下载:
新版本的Anaconda没有VSCODE,如果大家为了安装VSCODE方便可以直接安装旧版的Anaconda,百度网盘连接如下。也可以装新版然后分开装VSCODE。
链接: https://pan.baidu.com/s/12tW0Oad_Tqn7jNs8RNkvFA 提取码: i83n

新版本anaconda的下载:
如果想要安装最新的Anaconda,首先登录Anaconda的官网:https://www.anaconda.com/distribution/。直接下载对应安装包就可以。
在这里插入图片描述
在这里插入图片描述
一般是下载64位的,下载完成后打开。

2、Anaconda的安装

在这里插入图片描述
选择安装的位置,可以不安装在C盘。
在这里插入图片描述
我选择了Add Anaconda to my PATH environment variable,这样会自动将anaconda装到系统的环境变量中,配置会更加方便一些。
在这里插入图片描述
等待安装完之后,Anaconda的安装就结束了。

二、Cudnn和CUDA的下载和安装

我这里使用的是torch=1.2.0,官方推荐的Cuda版本是10.0,因此会用到cuda10.0,与cuda10.0对应的cudnn是7.4.1。

1、Cudnn和CUDA的下载

网盘下载:
链接: https://pan.baidu.com/s/1znYSRDtLNFLufAuItOeoyQ
提取码: 8ggr

官网下载:
cuda10.0官网的地址是:
cuda10.0官网地址
cudnn官网的地址是:需要大家进去后寻找7.4.1.5。
cudnn官网地址

下载完之后得到这两个文件。
在这里插入图片描述
在这里插入图片描述

2、Cudnn和CUDA的安装

下载好之后可以打开exe文件进行安装。
在这里插入图片描述
这里选择自定义。
不
然后直接点下一步就行了。
在这里插入图片描述
安装完后在C盘这个位置可以找到根目录。
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
然后大家把Cudnn的内容进行解压。
在这里插入图片描述
把这里面的内容直接复制到C盘的根目录下就可以了。
在这里插入图片描述

三、配置torch环境

1、pytorch环境的创建与激活

Win+R启动cmd,在命令提示符内输入以下命令:

conda create –n pytorch python=3.6
activate pytorch

这里一共存在两条指令:
前面一条指令用于创建一个名为pytorch的环境,该环境的python版本为3.6。
后面一条指令用于激活一个名为pytorch的环境。

2、pytorch库的安装

由于我们所有的操作都要在对应环境中进行,所以在进行库的安装前需要先激活环境。

activate pytorch 

此时cmd窗口的样子为:
在这里插入图片描述

a、官方推荐安装方法(推荐)

打开pytorch的官方安装方法:
https://pytorch.org/get-started/previous-versions/
官网推荐的安装代码如下,我使用的是Cuda10的版本,不太懂为什么要写3个=才能正确定位,两个=会定位到cuda92的whl:

# CUDA 10.0
pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

这是pytorch官方提供的指令,用于安装torch和torchvision。

b、先下载whl后安装

需要注意的是,直接这样安装似乎特别慢,因此我们可以进入如下网址:
https://download.pytorch.org/whl/torch_stable.html
找到自己需要的轮子下载。下载的时候使用迅雷下载就行了,速度还是比较快的!
在这里插入图片描述
在这里插入图片描述
下载完成后找到安装路径:
在这里插入图片描述
在cmd定位过来后利用文件全名进行安装就行了!
在这里插入图片描述
这里我也传一个百度网盘的版本。
链接: https://pan.baidu.com/s/14-QVk7Kb_CVwaVZxVPIgtw
提取码: rg2e
全部安装完成之后重启电脑。

3、其它依赖库的安装

但如果想要跑深度学习模型,还有一些其它的依赖库需要安装。具体如下:

scipy==1.2.1
numpy==1.17.0
matplotlib==3.1.2
opencv_python==4.1.2.30
torch==1.2.0
torchvision==0.4.0
tqdm==4.60.0
Pillow==8.2.0
h5py==2.10.0

如果想要更便捷的安装可以在桌面或者其它地方创建一个requirements.txt文件,复制上述内容到txt文件中。
在这里插入图片描述
使用如下指令安装即可。下述指令中,requirements.txt前方的路径是我将文件放在桌面的路径,各位同学根据自己的电脑修改。

pip install -r C:\Users\33232\Desktop\requirements.txt

4、安装较慢请注意换源

需要注意的是,如果在pip中下载安装比较慢可以换个源,可以到用户文件夹下,创建一个pip文件夹,然后在pip文件夹里创建一个txt文件。
在这里插入图片描述
修改txt文件的内容,并且把后缀改成ini

[global]
index-url = http://pypi.mirrors.ustc.edu.cn/simple
[install]
use-mirrors =true
mirrors =http://pypi.mirrors.ustc.edu.cn/simple/
trusted-host =pypi.mirrors.ustc.edu.cn

在这里插入图片描述
在这里插入图片描述
全部安装完成之后重启电脑。

四、安装VSCODE

我个人喜欢VSCODE,所以就安装它啦。其它的编辑软件也可以,个人喜好罢了。

1、下载安装包安装(推荐)

最新版本的Anaconda没有VSCODE因此可以直接百度VSCODE进行安装。

a、VSCODE的下载

直接加载VSCODE的官网https://code.visualstudio.com/,点击Download for Windows即可下载。
在这里插入图片描述

b、VSCODE的安装

首先同意协议,点一下步。
在这里插入图片描述
其他里面的几个勾要打起来,因为这样就可以右键文件夹用VSCODE打开,非常方便。下一步。
在这里插入图片描述
继续下一步安装即可。
在这里插入图片描述

安装完成后在左下角更改自己的环境就行了。
在这里插入图片描述

2、anaconda上安装

打开anaconda,切换环境。
在这里插入图片描述
安装VSCODE,安装完就可以launch一下了,之后就可以把VScode固定到任务栏上,方便打开。
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/131945.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Spring boot + Spring Security 多种登录认证方式配置(一)

    Spring boot + Spring Security 多种登录认证方式配置(一)

    2021年8月31日
    189
  • linux进程间通信方式有哪些_高级进程通信方式

    linux进程间通信方式有哪些_高级进程通信方式前言进程能够单独运行并且完成一些任务,但是也经常免不了和其他进程传输数据或互相通知消息,即需要进行通信,本文将简单介绍一些进程之间相互通信的技术–进程间通信(InterProcessCommunication,IPC)。由于篇幅有限,本文不会对每一种进行详细介绍。概览进程间通信常见方式如下: 管道 FIFO 消息队列 信号量 共享内存…

    2022年10月11日
    4
  • Kafuka面试(整合Kafka两种模式区别)

    Kafuka面试(整合Kafka两种模式区别)整合Kafka两种模式说明★面试题:Receiver&Direct开发中我们经常会利用SparkStreaming实时地读取kafka中的数据然后进行处理,在spark1.3版本后,kafkaUtils里面提供了两种创建DStream的方法:1.Receiver接收方式:KafkaUtils.createDstream(开发中不用,了解即可,但是面试可能会…

    2022年5月31日
    53
  • input 手机端 无法输入

    input 手机端 无法输入input 手机端 无法输入

    2022年4月24日
    53
  • python常用模块大全_python3内置模块大全

    python常用模块大全_python3内置模块大全mathmath.ceil(a):用来返回≥a的最小整数math.floor(a):用来返回≤a的最大整数round(a[,b])如果没有参数b,只有a,round()作用是四舍五入如果

    2022年7月30日
    8
  • kong网关架构_kong网关性能

    kong网关架构_kong网关性能Kong是一个使用了lua-nginx-module运行在Nginx之上的Lua应用。Kong是一个成熟的API网关解决方案。API网关,即APIGateway,是大型分布式系统中,为了保护内部服务而设计的一道屏障,可以提供高性能、高可用的API托管服务,从而帮助服务的开发者便捷地对外提供服务,而不用考虑安全控制、流量控制、审计日志等问题,统一在网关层将安全认证,流量控制,审计日志,黑白名单…

    2025年10月24日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号