单射、双射与满射[通俗易懂]

单射、双射与满射[通俗易懂]数学上,单射、满射和双射指根据其定义域和陪域的关联方式所区分的三类函数。单射:指将不同的变量映射到不同的值的函数。满射:指陪域等于值域的函数。即:对陪域中任意元素,都存在至少一个定义域中的元素与之对应。双射(也称一一对应):既是单射又是满射的函数。直观地说,一个双射函数形成一个对应,并且每一个输入值都有正好一个输出值以及每一个输出值都有正好一个输入值。(在一些参考书中,“一一”用…

大家好,又见面了,我是你们的朋友全栈君。

数学上,单射满射双射指根据其定义域陪域的关联方式所区分的三类函数

  • 单射:指将不同的变量映射到不同的值的函数。
  • 满射:指陪域等于值域的函数。即:对陪域中任意元素,都存在至少一个定义域中的元素与之对应。
  • 双射(也称一一对应):既是单射又是满射的函数。直观地说,一个双射函数形成一个对应,并且每一个输入值都有正好一个输出值以及每一个输出值都有正好一个输入值。 (在一些参考书中,“一一”用来指双射,但是这里不用这个较老的用法。)

下图对比了四种不同的情况:

[编辑]单射(one to one或injective)

单射、双射与满射[通俗易懂]

单射、双射与满射[通俗易懂]

单射复合:第二个函数不必是单射。

一个函数称为单射(一对一)如果每个可能的像最多只有一个变量映射其上。等价的有,一个函数是单射如果它把不同值映射到不同像。一个单射函数简称单射。形式化的定义如下。

函数
f: A \to B 是
单射 
当且仅当对于所有
a,b \in A, 我们有
f(a) = f(b) \Rightarrow a = b.
  • 一个函数f : A → B是单射当且仅当A是空的或f是左可逆的,也就是说,存在一个函数gB → A 使得g o f = A上的恒等函数.
  • 因为每个函数都是满射当它的陪域限制为它的值域时,每个单射导出一个到它的值域的双射。更精确的讲,每个单射f : A → B可以分解为一个双射接着一个如下的包含映射。令fR : A → f(A)为把陪域限制到像的f,令i : f(A) → B为从f(A)到B中的包含映射.则f = i o fR. 一个对偶的分解会对满射成立。
  • 两个单射的复合也是单射,但若g o f是单射,只能得出f是单射的结论。参看右图。

[编辑]满射(onto)

单射、双射与满射[通俗易懂]

单射、双射与满射[通俗易懂]

满射复合:第一个函数不必为满射

一个函数称为满射如果每个可能的像至少有一个变量映射其上,或者说陪域任何元素都有至少有一个变量与之对应。形式化的定义如下:

函数
f: A \to B
满射
当且仅当对任意
b \in B,存在
a \in A满足
f(a) = b
  • 函数f:X\rightarrow Y为一个满射,当且仅当存在一个函数g:Y\rightarrow X满足f\circ g等于Y上的单位函数。(这个陈述等同于选择公理。)
  • 将一个满射的陪域中每个元素的原像集看作一个等价类,我们可以得到以该等价类组成的集合(原定义域的商集)为定义域的一个双射
  • 如果fg皆为满射,则f\circ g为满射。如果f\circ g是满射,则仅能得出f是满射。参见右图。

[编辑]双射(bijective)

单射、双射与满射[通俗易懂]

单射、双射与满射[通俗易懂]

双射复合:第一个函数不必为满射、第二个函数不必为单射

既是单射又是满射的函数称为双射. 函数为双射当且仅当每个可能的像有且仅有一个变量与之对应。

函数
f: A \to B
双射
当且仅当对任意
b \in B存在唯一
a \in A满足
f(a) = b
  • 函数f : A → B为双射当且仅当其可逆,即,存在函数gB → A满足g o f = A上的恒等函数,且f o gB上的恒等函数。
  • 两个双射的复合也是双射。如g o f为双射,则仅能得出f为单射且g为满射。见右图。
  • 同一集合上的双射构成一个对称群
  • 如果X,Y皆为实数\mathbb{R},则双射函数f:\mathbb{R}\rightarrow \mathbb{R}可以被视觉化为两根任意的水平直线只相交正好一次。(这是水平线测试的一个特例。)

[编辑]

双射函数经常被用于表明集合XY是等的,即有一样的基数。如果在两个集合之间可以建立一个一一对应,则说这两个集合等势。

如果X,Y皆为有限集合,则这两个集合中X,Y之间存在一个双射,当且仅当X和Y的元素数相等。其实,在公理集合论中,元素数相同的定义被认为是个特例,一般化这个定义到无限集合需要导入基数的概念,这是一个区别各类不同大小的无限集合的方法。

[编辑]举例

对于每个函数给定定义域陪域很重要,因为改变这些就能改变函数属于什么

GeLeiMappings.PNG

单射、双射与满射[通俗易懂]

[编辑]双射

  • 任意集合上的恒等函数id为一双射。
  • 考虑函数f:\mathbb{R}\rightarrow\mathbb{R},定义为f(x)=2x+1。这个函数是双射,因为给定任意一个实数y,我们都能解y=2x+1,得到唯一的实数解x=(y-1)/2
  • 指数函数 \exp : \mathbf{R} \to \mathbf{R}^+ : x \mapsto \mathrm{e}^x及其逆函数自然对数 \ln : \mathbf{R}^+ \to \mathbf{R} : x \mapsto \ln{x}

[编辑]单射、但非满射

  • 指数函数\exp : \mathbf{R} \to \mathbf{R} : x \mapsto \mathrm{e}^x

[编辑]满射、但非单射

  • \mathbf{R} \to \mathbf{R} : x \mapsto (x-1)x(x+1) = x^3 - x

[编辑]即非单射也非满射

  • \mathbf{R} \to \mathbf{R} : x \mapsto x^2

 

 

[摘自wikipedia]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/136541.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • js中ajax写法_ajax原生写法

    js中ajax写法_ajax原生写法//JavaScriptDocumentvarXHR;//定义一个全局对象functioncreateXHR(){//首先我们得创建一个XMLHttpRequest对象if(window.ActiveXObject){//IE的低版本系类XHR=newActiveXObject(‘Microsoft.XMLHTTP’);//之前IE垄断了整个浏览器市场,没遵循W3C标准…

    2022年9月30日
    5
  • Java文件操作(超详细+代码示例)「建议收藏」

    Java文件操作(超详细+代码示例)「建议收藏」Java文件操作一、Java.io包1.1File类1.2Stream流1.2.1使用FileInputStream类1.2.2使用FileOutputStream类二、序列化我们日常使用电脑的时候,基本都会和文件打交道,比如我们做ppt,或者写论文的时候,我们打开的word,ppt等等都是一个文件,这些文件不一样的主要是因为后缀名不一样,所以计算机才可以分辨出来这些文件的区别。文件一…

    2022年7月26日
    13
  • MATLAB绘制三维地图「建议收藏」

    MATLAB绘制三维地图「建议收藏」1、meshgrid:生成格点矩阵,类似于给定坐标空间[x,y]=meshgrid(1:10);

    2022年10月11日
    1
  • BigDecimal除法的精度问题

    BigDecimal除法的精度问题BigDecimal除法的精度问题在使用BigDecimal的除法时,遇到一个鬼畜的问题,本以为的精度计算,结果使用返回0,当然最终发现还是自己的使用姿势不对导致的,因此记录一下,避免后面重蹈覆辙I.问题抛出在使用BigDecimal做高精度的除法时,一不注意遇到了一个小问题,如下@TestpublicvoidtestBigDecimal(){BigDecimal…

    2022年6月17日
    130
  • allure报告打开为loading状态「建议收藏」

    allure报告打开为loading状态「建议收藏」生成测试报告命令python3-mpytest–alluredir=../unit/allure_resulttest_case.pyalluregenerate./unit/allure_result-o./unit/allure_report直接在pycharm中右击allure报告中的index.html,使用如下图方式打开的allure报告打开一切顺利!!!在jenkins中把报告打包通过附件发送到邮件,然后在邮件中下载解压打开就会出现如下情况二、问

    2022年7月26日
    42
  • PHP工厂模式和抽象工厂模式

    PHP工厂模式和抽象工厂模式PHP工厂模式:php设计模式笔记,第二个是工厂模式。工厂,我们就可以联想到是一座房子,里面有N多车间,生产着不同系列的产品。我们如果是采购的话,要看什么产品,工厂很快从随便从其中一个车间拿出一个就解决,不会影响其他车间的工作,各自分工明确。在复杂的情况,也简单化了。php里面的工厂模式,也类似,由一个类,看作是工厂,在类里面构造一个对外方法接口,返回不同类型的类实例。工厂模式的好处:在复

    2022年7月25日
    9

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号