宽度学习(BLS)网络的研究和应用[通俗易懂]

宽度学习(BLS)网络的研究和应用[通俗易懂]宽度学习(BLS)网络的研究和应用  除了上述这几大AI学术研究要点之外,还有宽度学习(BLS)网络也值得重点关注。宽度学习(BLS)自2018年由我们(陈俊龙教授及其团队)首次在学术界提出,便迅速在科研机构(中科院)、国内知名高校及企业展开了较为广泛的研究与应用。  虽然深度学习网络非常强大,但大多数网络都被极度耗时的训练过程所困扰。首先深度网络的结构复杂并且涉及到大量的超参数。另…

大家好,又见面了,我是你们的朋友全栈君。

宽度学习(BLS)网络的研究和应用

 

  除了上述这几大AI学术研究要点之外,还有宽度学习(BLS)网络也值得重点关注。宽度学习(BLS)自2018年由我们(陈俊龙教授及其团队)首次在学术界提出,便迅速在科研机构(中科院)、国内知名高校及企业展开了较为广泛的研究与应用。

  虽然深度学习网络非常强大,但大多数网络都被极度耗时的训练过程所困扰。首先深度网络的结构复杂并且涉及到大量的超参数。另外,这种复杂性使得在理论上分析深层结构变得极其困难。另一方面,为了在应用中获得更高的精度,深度模型不得不持续地增加网络层数或者调整参数个数。为了克服这些问题, 宽度学习系统提供了一种深度学习网络的替代方法,同时,如果网络需要扩展,模型可以通过增量学习高效重建。

  宽度学习(BLS)在设计思路方面,首先,利用输入数据映射的特征作为网络的「特征节点」;其次,映射的特征被增强为随机生成权重的「增强节点」;最后,所有映射的特征和增强节点直接连接到输出端,对应的输出系数可以通过快递的伪逆得出(或者梯度下降方法)。BLS 最重要的特点在于它的单隐层结构,具有两个重要的优势,一个是「横向扩展」,另一个则为「增量学习」,与深度神经网络不同之处在于,BLS 不采用深度神经网络的结构,而是基于单隐层神经网络构建,可以用「易懂的数学推导来做增量学习」。

  直白来讲, 深度神经网络学习架构是在结构固定以后才开始学习,此后学习期间如果出现不准确情况,就要重新设计网络、再学习一次。而宽度学习则是设计好网络后,当面临学习不准确的情况,可以随时以横向的方式进行增量扩充,即通过增加神经元,以提高准确度。这种增量学习的模式也适用在数据实时的进入已训练成的神经网络模型当中,而不用重新对整个收集的数据再重新训练。

  在安防领域,宽度学习网络的应用主要表现在两个方面:一是 提升人工智能识别的可靠性。比如在人脸识别算法训练过程中,最好的数据当然是高清正脸无遮挡的干净人脸数据,但实际上测试推理过程中,很多的人脸数据并不完美,会出现被遮挡(墨镜、口罩)、模糊、非正脸角度的人脸照片。在做算法训练过程中,我们可以基于宽度学习网络架构,通过将干净人脸图片和缺陷人脸图片融合到一起做训练,甚至可以特意生成一些有缺陷的图片样本,由此来提高算法对缺陷图片的识别准确率,从而提升复杂场景下人脸识别算法的场景适应能力。二是 解决数据标注的问题,在人工智能算法训练过程中,数据的标注也非常重要,如果标注错误,那么不管算法有多精确,训练的结果也不会理想。通过宽度学习网络构建的算法模型,可以很好地解决算法标注错误的问题。

  通过研究团队的大量测试,可以看出宽度学习(BLS)以及它的各种变体和扩展结构具有良好的发展潜力,在实际应用中表现出其快速且高精度的优秀性能。目前宽度学习在很多技术领域都有展开应用,比如时间序列、高光谱分析、脑机信号分析、容错、基因鉴定与疾病检测、步态识别、3D打印以及智能交通等。随着人工智能技术研究的持续深入,宽度学习这种不需要深度结构的高效增量学习系统有望加速助推人工智能的发展。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/143326.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 平庸前端码农之蜕变 — AST

    平庸前端码农之蜕变 — AST前言首先,先说明下该文章是译文,原文出自《ASTforJavaScriptdevelopers》。很少花时间特地翻译一篇文章,咬文嚼字是件很累的事情,实在是这篇写的太棒了,所以忍不住想和大家一起分享。该译文出自我的博客:github.com/CodeLittleP…,我的博客会不定时更新各种类型文章,希望大家支持。OK,我们直接进入正题。为什么要谈AST(抽象语法树)?如果你查看目…

    2022年7月21日
    13
  • elk查询语法_elk配置

    elk查询语法_elk配置记录了ElasticSearch、Logstash和Kibana的简单安装方法和ES的常用查询操作命令,Logstash还未整理,去官网查比较全。ElasticSearch安装#下载安装包wgethttps://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.2.1-linux-x86_64.tar.gz#解压修改文件夹名tar-zxvfelasticsearch-7.2.1-linux-x86_

    2025年6月26日
    0
  • HI3516DV300 GPIO操作

    HI3516DV300 GPIO操作前言本次实验根据ProYuan28博主写的博客GPIO文档进行适配调试,特此记录GPIO操作。正文GPIO分为三个步骤:1设置gpio端口复用寄存器;2设置GPIO口的方向寄存器(GPIO_DIR);3设置读取或者写入GPIO值寄存器(GPIO_DATA);实验平台:HI3516DV300…

    2022年9月15日
    2
  • redis的雪崩和穿透_redis击穿 穿透 雪崩,怎么预防

    redis的雪崩和穿透_redis击穿 穿透 雪崩,怎么预防Redis雪崩:查询时Redis没有数据本来先从Redis里面查某个数据但是Redis中这个数据刚好被删除了,还没来得及更新一瞬间很多请求直接进入了Mysql进行查询而mysql承受不了太大压力,就会出现雪崩Redis穿透:跳过我们预想的数据本来先从Redis里面查某个数据但是Redis中没有这个数据那么请求就会始终从mysql中查询Redis没有起到作用Redis雪崩和Redis穿透的根本原因是:开发时,开发人员并未考虑到这些问题。Redis雪崩和Redis穿透的性质:大量

    2022年9月14日
    3
  • 1M 等于多少字节

    1M 等于多少字节1M=1024k=1048576字节算法是:8bit(位)=1Byte(字节)1024Byte(字节)=1KB1024KB=1MB1024MB=1GB1024GB=1TB一个汉字要占用2个字节如果换算成中文汉字那么就是1M=524288个汉字

    2022年5月9日
    91
  • 有没有支持5V输入和9V输入给两串8.4V锂电池充电的芯片IC「建议收藏」

    有没有支持5V输入和9V输入给两串8.4V锂电池充电的芯片IC「建议收藏」有的FS4062支持5V和9V同步升降压充电8.4V两床锂电池,也就是5V9V适配器自动识别两串8.4V锂电池高效充电管理芯片概述:FS4062是一款宽电压输入,专门为7.4V双节锂电池充电的充电管理芯片,兼容5V,9V适配器。在5V供电的情况下,实现升压充电,电池端最大充电电流1.3A,在9V供电的情况下,实现降压充电,电池端最大充电电流1.2A,充电电流可以通过外置电阻RSET来设定。低阻抗的电源通路可以使充电效率更高,减少充电时间,提高电池使用寿命。.

    2022年10月6日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号