宽度学习(BLS)实战——python复刻MNIST数据集的数据预处理及训练过程[通俗易懂]

宽度学习(BLS)实战——python复刻MNIST数据集的数据预处理及训练过程[通俗易懂]目录1.宽度学习(BroadLearningSystem)2.MNIST数据集3.复刻MNIST数据集的预处理及训练过程1.宽度学习(BroadLearningSystem)对宽度学习的理解可见于这篇博客宽度学习(BroadLearningSystem)_颹蕭蕭的博客-CSDN博客_宽度学习这里不再做详细解释2.MNIST数据集mnist数据集官网(下载地址):MNISThandwrittendigitdatabase,YannLeCun,Cori

大家好,又见面了,我是你们的朋友全栈君。

目录

 

1.宽度学习(Broad Learning System)

2.MNIST数据集

3.复刻MNIST数据集的预处理及训练过程


1.宽度学习(Broad Learning System)

对宽度学习的理解可见于这篇博客宽度学习(Broad Learning System)_颹蕭蕭的博客-CSDN博客_宽度学习

这里不再做详细解释

2.MNIST数据

mnist数据集官网(下载地址):MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges

MNIST数据集有称手写体数据集,其中中训练集一共包含了 60,000 张图像和标签,而测试集一共包含了 10,000 张图像和标签。测试集中前5000个来自最初NIST项目的训练集.,后5000个来自最初NIST项目的测试集。前5000个比后5000个要规整,这是因为前5000个数据来自于美国人口普查局的员工,而后5000个来自于大学生。
MNIST数据集自1998年起,被广泛地应用于机器学习和深度学习领域,用来测试算法的效果,相当于该领域的”hello world!”

3.复刻MNIST数据集的预处理及训练过程

原bls代码下载地址:Broad Learning System

下载后,我先用原代码中带的数据和代码进行训练,运行结果如下:

1.不含增量的bls代码:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6ZW_5byT5ZCM5a2m,size_20,color_FFFFFF,t_70,g_se,x_16

2.含有增量的bls代码:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6ZW_5byT5ZCM5a2m,size_20,color_FFFFFF,t_70,g_se,x_16

可以看到bls训练模型的时间非常短并且精确度达到0.93以上

然后我们回过头来看它用的训练集和测试集,它共输入三个csv文件,分别为test.csv,train.csv,sample_submission.csv

其中格式为:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6ZW_5byT5ZCM5a2m,size_20,color_FFFFFF,t_70,g_se,x_16

 

这就是我们处理完MNIST数据之后需要bls代码中训练的数据,统计得到以下信息

数据集 数据总数
test.csv(测试集) 28000张
train.csv(训练集) 42000张

其中sample_submission.csv是提交样例,它最后会用来保存训练出的模型对测试集打的标签为csv文件。

那么得到这些信息我们就可以开始处理我们的mnist数据集了,在官网下载完数据集后我们得到了四个文件:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6ZW_5byT5ZCM5a2m,size_20,color_FFFFFF,t_70,g_se,x_16

这个时候如果你是初学者,你就会奇怪明明是图像数据为什么下载完会是这四个东西?

这是因为为了方便使用,官方已经将70000张图片处理之后存入了这四个二进制文件中,因此我们要对这四个文件进行解析才能看到原本的图片。

此处用到struct包进行解析,详情见于Mnist数据集简介_查里王的博客-CSDN博客_mnist数据集

解析代码:

import os
import struct
import numpy as np

# 读取标签数据集
with open('../data/train-labels.idx1-ubyte', 'rb') as lbpath:
    labels_magic, labels_num = struct.unpack('>II', lbpath.read(8))
    labels = np.fromfile(lbpath, dtype=np.uint8)

# 读取图片数据集
with open('../data/train-images.idx3-ubyte', 'rb') as imgpath:
    images_magic, images_num, rows, cols = struct.unpack('>IIII', imgpath.read(16))
    images = np.fromfile(imgpath, dtype=np.uint8).reshape(images_num, rows * cols)

# 打印数据信息
print('labels_magic is {} \n'.format(labels_magic),
      'labels_num is {} \n'.format(labels_num),
      'labels is {} \n'.format(labels))

print('images_magic is {} \n'.format(images_magic),
      'images_num is {} \n'.format(images_num),
      'rows is {} \n'.format(rows),
      'cols is {} \n'.format(cols),
      'images is {} \n'.format(images))

# 测试取出一张图片和对应标签
import matplotlib.pyplot as plt

choose_num = 1  # 指定一个编号,你可以修改这里
label = labels[choose_num]
image = images[choose_num].reshape(28, 28)

plt.imshow(image)
plt.title('the label is : {}'.format(label))
plt.show()

运行结果:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6ZW_5byT5ZCM5a2m,size_20,color_FFFFFF,t_70,g_se,x_16

 但是这并不是我们要的东西,我们需要的是将二进制文件解析后存入csv文件中用于训练。

在观察了原代码中所用的csv文件的格式以及bls代码中读取数据的方式后,我发现需要再存入之前对数据添加一个index,其中包括”label”和”pixel0~pixel784″,其中pixel是一维数组的元素编码,由于mnist数据集是28*28的图片,所以,转为一维数组后一共有784个元素。

知道这个原理后,编写代码如下:

import csv

def pixel(p_array, outf):
    with open(outf, "w",newline='') as csvfile:
            writer = csv.writer(csvfile)
            # 先写入columns_name
            writer.writerow(p_array)

def convert(imgf, labelf, outf, n):
    f = open(imgf, "rb")
    o = open(outf, "a")
    l = open(labelf, "rb")

    f.read(16)
    l.read(8)
    images = []

    for i in range(n):
        image = [ord(l.read(1))]
        for j in range(28*28):
            image.append(ord(f.read(1)))
        images.append(image)

    for image in images:
        o.write(",".join(str(pix) for pix in image)+"\n")
    f.close()
    o.close()
    l.close()

if __name__ == '__main__':

    p_array = []
    for j in range(0, 785):
        if j == 0 :
            b1 = "label"
            p_array.append(b1)
        else:
            b1 = 'pixel' + str(j - 1)
            p_array.append(b1)
    pixel(p_array,"../data/mnist_train.csv")
    pixel(p_array,"../data/mnist_test.csv")

    convert("../data/train-images.idx3-ubyte", "../data/train-labels.idx1-ubyte",
        "../data/mnist_train2.csv", 42000)
    convert("../data/t10k-images.idx3-ubyte", "../data/t10k-labels.idx1-ubyte",
        "../data/mnist_test2.csv", 28000)

    print("success!")

代码运行结果;

得到经过二进制文件解析以及格式处理后的数据:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6ZW_5byT5ZCM5a2m,size_20,color_FFFFFF,t_70,g_se,x_16

现在训练集文件格式与源代码格式一样了,但是,既然是复刻那么我们还有一个问题没有解决——数据总数不一样,根据源代码中信息,训练集有42000张,测试集28000张,但是我们的训练集有60000张,测试集有10000张,所以我们需要稍微处理一下我们数量,其实这个很简单,只要将训练集中的数据匀18000张给测试集就可以了,另外测试集中标签一行需要删除,因为测试集好比高考试卷,标签相当于答案,没有人会把高考答案告诉你然后让你考对不对。这个过程可以用python代码实现,只要加入一点点功能,编写功能代码如下:

(记得删除测试集中的标签)

import csv
def test_add(train_imgf,train_labelf,outf):
    f = open(train_imgf, "rb")
    o = open(outf, "a")
    l = open(train_labelf, "rb")
    f.read(16)
    l.read(8)
    images = []

    for i in range(42001, 60001):
        image = [ord(l.read(1))]
        for j in range(28 * 28):
            image.append(ord(f.read(1)))
        images.append(image)

    for image in images:
        o.write(",".join(str(pix) for pix in image) + "\n")
    f.close()
    o.close()
    l.close()


def pixel(p_array, outf):
    with open(outf, "w",newline='') as csvfile:
            writer = csv.writer(csvfile)
            # 先写入columns_name
            writer.writerow(p_array)

def convert(imgf, labelf, outf, n):
    f = open(imgf, "rb")
    o = open(outf, "a")
    l = open(labelf, "rb")

    f.read(16)
    l.read(8)
    images = []

    for i in range(n):
        image = [ord(l.read(1))]
        for j in range(28*28):
            image.append(ord(f.read(1)))
        images.append(image)

    for image in images:
        o.write(",".join(str(pix) for pix in image)+"\n")
    f.close()
    o.close()
    l.close()

if __name__ == '__main__':

    p_array = []
    for j in range(0, 785):
        if j == 0 :
            b1 = "label"
            p_array.append(b1)
        else:
            b1 = 'pixel' + str(j - 1)
            p_array.append(b1)
    pixel(p_array,"../data/mnist_train2.csv")
    pixel(p_array,"../data/mnist_test2.csv")

    convert("../data/train-images.idx3-ubyte", "../data/train-labels.idx1-ubyte",
        "../data/mnist_train2.csv", 42000)
    convert("../data/t10k-images.idx3-ubyte", "../data/t10k-labels.idx1-ubyte",
        "../data/mnist_test2.csv", 10000)
    test_add("../data/train-images.idx3-ubyte", "../data/train-labels.idx1-ubyte", "../data/mnist_test2.csv")

    print("success!")

处理后,与提交案例一起加入bls训练,可以得到:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6ZW_5byT5ZCM5a2m,size_20,color_FFFFFF,t_70,g_se,x_16

可以看到这与之前原始数据训练的结果几乎相同

 

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/143425.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 区块链:P2P技术是什么

    区块链:P2P技术是什么摘要:包括比特币、以太坊等在内的去中心化的区块链平台,其底层网络都是采用的P2P技术实现,每个节点都是对等的。而本文,则先通过介绍P2P技术的特点和发展历史,让大家对P2P这个技术的来龙去脉有一个初步的认识和了解。然后在下一篇文章中,我会详细介绍第三代P2P技术(DHT)—Kademlia算法的实现原理。1.p2p的定义P2P是peer-to-peer的简称,又称为点对点技…

    2022年6月19日
    25
  • Centos6环境下CI(CodeIgniter)框架创建定时任务[通俗易懂]

    Centos6环境下CI(CodeIgniter)框架创建定时任务

    2022年2月10日
    36
  • vmware15最新激活码2021【中文破解版】[通俗易懂]

    (vmware15最新激活码2021)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

    2022年3月26日
    49
  • OpenProcessToken()运用心得

    OpenProcessToken()运用心得   使用OpenProcessToken()用于得到指定进程的访问令牌,而第三个参数定义设置不正确可能导致该函数调用失败,以下举例说明: HANDLEhProc;hProc=GetCurrentProcess(); //Method1-Error(998)HANDLE*hToken;OpenProcessToken(hProc,TOKEN_ADJUST_PRIV

    2022年6月25日
    26
  • 在vue中使用tinymce富文本编辑器+tinymce富文本编辑器插入图片

    在vue中使用tinymce富文本编辑器+tinymce富文本编辑器插入图片1.安装#npminstalltinymce-S2.把node_modules\tinymce里面的文件包括tinymce文件夹全部复制到static文件夹下面,如下图3.在mian.js中引入tinymce(也可以在组件中引入)importTinymcefrom’tinymce’Vue.prototype.$tinymce=Tinymce…

    2022年5月1日
    82
  • ACT初代奥特曼_ac自动机上dp

    ACT初代奥特曼_ac自动机上dp上帝手中有 N 种世界元素,每种元素可以限制另外 1 种元素,把第 i 种世界元素能够限制的那种世界元素记为 A[i]。现在,上帝要把它们中的一部分投放到一个新的空间中去建造世界。为了世界的和平与安宁,上帝希望所有被投放的世界元素都有至少一个没有被投放的世界元素限制它。上帝希望知道,在此前提下,他最多可以投放多少种世界元素?输入格式第一行是一个整数 N,表示世界元素的数目。第二行有 N 个整数 A[1],A[2],…,A[N]。A[i] 表示第 i 个世界元素能够限制的世界元素的编号。输出格式

    2022年8月9日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号