SMO算法笔记及个人理解

SMO算法笔记及个人理解SMO算法介绍SMO算法是一种启发式算法,其基本思路是:如果所有变量的解都满足此优化问题的KKT条件,那么这个最优化问题的解就得到了。(KKT条件是该最优化问题的充分必要条件)。否则,选择两个变量,固定其他变量针对这两个变量构建一个二次规划问题。特点:将原始的二次规划问题分解为只含有两个变量的二次规划子问题,对子问题不断求解,使得所有的变量满足KKT条件包含两部分:1、求解两个变量二次规划的解析方法2、选择变量的启发式方法(1)第1个变量的选择:确定在当前的分类器中,违反K.

大家好,又见面了,我是你们的朋友全栈君。

SMO算法介绍

SMO算法是一种启发式算法,其基本思路是:如果所有变量的解都满足此优化问题的KKT条件,那么这个最优化问题的解就得到了。(KKT条件是该最优化问题的充分必要条件)。否则,选择两个变量,固定其他变量针对这两个变量构建一个二次规划问题。

SMO算法笔记及个人理解

 特点:

将原始的二次规划问题分解为只含有两个变量的二次规划子问题,对子问题不断求解,使得所有的变量满足KKT条件

包含两部分:

1、求解两个变量二次规划的解析方法

2、选择变量的启发式方法

(1)第1个变量的选择:确定在当前的分类器中,违反KKT条件的元组Xi;

SMO称第1个变量的选择称为外循环。外循环在训练样本中选取违反KKT条件最严重的样本点,将其作为第一个变量。遍历的时候首先遍历满足SMO算法笔记及个人理解的样本点,也就是在间隔边界上的支持向量点,检验是否满足KKT条件;如果都满足,那么遍历整个训练集,检验是否满足KKT条件。 

(2)第2个变量的选择:根据Xi,找到使得|Ei−Ej|最大的元组Xj;

SMO称第2个变量的选择称为内循环。在找到第一个变量的基础上,第二个变量的标准是希望能使SMO算法笔记及个人理解有足够大的变化。由于SMO算法笔记及个人理解是依赖于|E1−E2|,为了加快计算的速度,所以选择|E1−E2|最大时的SMO算法笔记及个人理解

当E1为正时,那么选择最小的Ei作为E2;如果E1为负,选择最大Ei作为E2。

为了节省时间,通常为每个样本的Ei保存在一个列表中,选择最大的|E1−E2|来近似最大化步长。 
 

SMO算法步骤总结:

1.初始化α,一般情况下令初始的αi全部为0;
2.选取优化变量α1和α2,执行相关的优化计算,得到更新后的α1,α2;
3.开始新的一轮迭代,重复执行上面的第2步,直到全部的αi满足公式(2)的KKT条件以及公式(1)中的约束条件;
SMO算法笔记及个人理解

 SMO算法笔记及个人理解

 (借鉴其他博主的图解)SVM学习总结(三)SMO算法流程图及注释源码_u010484388的博客-CSDN博客_smo算法代码

SMO算法笔记及个人理解

 

代码细节

下面的伪代码描述了整个SMO算法:

target = desired output vector
point = training point matrix
procedure takeStep(i1,i2)
    if (i1 == i2) return 0
    alph1 = Lagrange multiplier for i1
    y1 = target[i1]
    E1 = SVM output on point[i1] – y1 (check in error cache)
    s = y1*y2
    Compute L, H via equations (13) and (14)
    if (L == H)
        return 0
    k11 = kernel(point[i1],point[i1])
    k12 = kernel(point[i1],point[i2])
    k22 = kernel(point[i2],point[i2])
    eta = k11+k22-2*k12
    if (eta > 0)
    {

        a2 = alph2 + y2*(E1-E2)/eta
        if (a2 < L) a2 = L
        else if (a2 > H) a2 = H
    }
    else
    {

        Lobj = objective function at a2=L
        Hobj = objective function at a2=H
        if (Lobj < Hobj-eps)
            a2 = L
        else if (Lobj > Hobj+eps)
            a2 = H
        else
            a2 = alph2
    }
    if (|a2-alph2| < eps*(a2+alph2+eps))
        return 0
    a1 = alph1+s*(alph2-a2)
    Update threshold to reflect change in Lagrange multipliers
    Update weight vector to reflect change in a1 & a2, if SVM is linear
    Update error cache using new Lagrange multipliers
    Store a1 in the alpha array
    Store a2 in the alpha array
    return 1
endprocedure

procedure examineExample(i2)
    y2 = target[i2]
    alph2 = Lagrange multiplier for i2
    E2 = SVM output on point[i2] – y2 (check in error cache)
    r2 = E2*y2
    if ((r2 < -tol && alph2 < C) || (r2 > tol && alph2 > 0))
    {

        if (number of non-zero & non-C alpha > 1)
        {

            i1 = result of second choice heuristic (section 2.2)
            if takeStep(i1,i2)
                return 1
        }
        loop over all non-zero and non-C alpha, starting at a random point
        {

            i1 = identity of current alpha
            if takeStep(i1,i2)
                return 1
        }
        loop over all possible i1, starting at a random point
        {

            i1 = loop variable
            if (takeStep(i1,i2)
                return 1
        }
    }
    return 0
endprocedure

main routine:
    numChanged = 0;
    examineAll = 1;
    while (numChanged > 0 | examineAll)
    {

        numChanged = 0;
        if (examineAll)
            loop I over all training examples
                numChanged += examineExample(I)
        else
            loop I over examples where alpha is not 0 & not C
                numChanged += examineExample(I)
        if (examineAll == 1)
            examineAll = 0
        else if (numChanged == 0)
            examineAll = 1
}
 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/151209.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号