基于LSTM的DDPG实现

基于LSTM的DDPG实现最近看了一些大佬的DDPG的实现(其实都是基于莫凡大佬的那个版本),结合我自己的毕设问题,发现只是用普通的全连接网络好像不太稳定,表现也不好,于是尝试了一下试着用一直对序列数据有强大处理能力的lstm来试试(虽然这个已经有人做过了),自己手动实现了一下基于lstm的ddpg,希望各位大佬指导指导。importtorchimporttorch.nnasnnimporttorch.op…

大家好,又见面了,我是你们的朋友全栈君。

这两天实在不想动这个东西,想了想还是毕业要紧。
稍微跟自己搭的环境结合了一下,对于高维的状态输入可以完成训练(但效果没测试,至少跑通了),并且加入了batch训练的过程,根据伯克利课程说明,加入batch的话会让训练方差减小,提升系统的稳定性。但是因为memory那块使用list做的所以取batch的时候过程相当绕(我发现我现在写python代码还是摆脱不了java的影子啊),希望有大佬给我点建议。

最近看了一些大佬的DDPG的实现(其实都是基于莫凡大佬的那个版本),结合我自己的毕设问题,发现只是用普通的全连接网络好像不太稳定,表现也不好,于是尝试了一下试着用一直对序列数据有强大处理能力的lstm来试试(虽然这个已经有人做过了),自己手动实现了一下基于lstm的ddpg,希望各位大佬指导指导。

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from Env_2_DDPG import Environment

date_count = 5
date_dim = 6
hide_dim = 10
hide_dim_lstm = 100
gamma = 0.8
lr_miu = 0.01
lr_Q = 0.02
tau = 0.01
trans_num = 10
batch_size = 4
MAX_EPISODES = 10
MAX_EP_STEPS = 500
memory_size = 10


class My_loss(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return torch.mean(-x)


class A_net(nn.Module):
    def __init__(self):
        super(A_net, self).__init__()
        self.state_dim = date_dim*date_count
        self.net = nn.LSTM(date_dim, hide_dim_lstm)
        self.reg = nn.Linear(date_count*hide_dim_lstm, 1)

    def forward(self, state):
        state = torch.Tensor(state)
        # state = torch.unsqueeze(state, 0)
        x, _ = self.net(state)
        s, b, h = x.shape
        x = x.view(s, b*h)
        x = self.reg(x)
        x = x.view(s, -1)
        return x


class C_net(nn.Module):
    def __init__(self):
        super(C_net, self).__init__()
        self.state_dim = date_count*date_dim
        self.net = nn.LSTM(date_dim, hide_dim_lstm)
        self.lstm_res = nn.Linear(date_count*hide_dim_lstm, date_count)
        self.action_net = nn.Linear(1, date_count)
        self.reg = nn.Linear(date_count, 1)

    def forward(self, state, action):
        state = torch.Tensor(state)
        x1, _ = self.net(state)
        x2 = self.action_net(action)
        s, b, h = x1.shape
        x1 = x1.view(s, b*h)
        x1 = self.lstm_res(x1)
        x = self.reg(x1+x2)
        x = x.view(s, -1)
        return x


class ddpg_lstm(nn.Module):
    def __init__(self):
        super(ddpg_lstm, self).__init__()
        self.miu_net = A_net()
        self.miu_pie = A_net()
        self.Q_net = C_net()
        self.Q_pie = C_net()
        self.optim_miu = optim.SGD(self.miu_net.parameters(), lr=lr_miu, momentum=0.5)
        self.optim_Q = optim.Adam(self.Q_net.parameters(), lr=lr_Q)
        self.loss_Q = nn.MSELoss()
        self.memory = list()
        self.index = 0

    def learn(self, tra):
        s = torch.Tensor(tra[0])
        s = s.reshape(batch_size, date_count, date_dim)
        r = torch.Tensor(tra[1])
        a = torch.Tensor(tra[2])
        s_ = torch.Tensor(tra[3])
        s_ = s_.reshape(batch_size, date_count, date_dim)
        a_ = self.miu_pie(s_)
        y = r + gamma*self.Q_pie(s_, a_)
        # a = torch.Tensor(np.array([a]))
        q = self.Q_net(s, a)

        self.optim_Q.zero_grad()
        q_loss = self.loss_Q(y, q)
        q_loss.backward(retain_graph=True)
        self.optim_Q.step()

        self.optim_miu.zero_grad()
        _miu_loss = My_loss()
        miu_loss = _miu_loss(q)
        miu_loss.backward()
        self.optim_miu.step()

    def soft_update(self):
        self.miu_pie.net.weight.data = tau*self.miu_net.net.weight.data + (1-tau)*self.miu_pie.net.weight.data
        self.miu_pie.reg.weight.data = tau*self.miu_net.reg.weight.data + (1-tau)*self.miu_pie.reg.weight.data
        self.Q_pie.net.weight.data = tau*self.Q_net.net.weight.data + (1-tau)*self.Q_pie.net.weight.data
        self.Q_pie.action_net.weight.data = tau*self.Q_net.action_net.weight.data + (1-tau)*self.Q_pie.action_net.weight.data
        self.Q_pie.reg.weight.data = tau*self.Q_net.reg.weight.data + (1-tau)*self.Q_pie.reg.weight.data

        # for x in self.miu_net.state_dict().keys():
        # eval('self.miu_net.' + x + '.data.mul_((1-TAU))')
        # eval('self.miu_net.' + x + '.data.add_(TAU*self.Actor_eval.' + x + '.data)')
        # for x in self.Critic_target.state_dict().keys():
        # eval('self.Critic_target.' + x + '.data.mul_((1-TAU))')
        # eval('self.Critic_target.' + x + '.data.add_(TAU*self.Critic_eval.' + x + '.data)')

    def store_trans(self, s, r, a, s_):
        temp = list()
        temp.append(s)
        temp.append(r)
        temp.append(a)
        temp.append(s_)
        self.memory.append(temp)
        self.index += 1
        if self.index > trans_num:
            del self.memory[0]

    def train_model(self):
        batch = np.random.choice(memory_size, batch_size)
        bs = np.zeros((batch_size, date_count*date_dim))
        br = np.zeros((batch_size, 1))
        ba = np.zeros((batch_size, 1))
        bs_ = np.zeros((batch_size, date_count*date_dim))
        index_ = 0
        for item in batch:
            bs[index_] = (np.array(self.memory[item][0])).reshape(date_dim*date_count)
            br[index_] = self.memory[item][1]
            ba[index_] = self.memory[item][2]
            bs_[index_] = (np.array(self.memory[item][3])).reshape(date_dim*date_count)
            index_ += 1
            # self.learn(self.memory[item])
        self.learn([bs, br, ba, bs_])
        print('over')
        # self.learn(tra)
            # self.learn()

    def next_action(self, state):
        action = self.miu_net(state)
        return action.detach()


ddpg = ddpg_lstm()
env = Environment()


def train():
    for i in range(MAX_EPISODES):
        # if i > 50:
        # print(i)
        s = env.reset()
        ep_reward = 0
        for j in range(MAX_EP_STEPS):
            a = ddpg.next_action(s)
            s_, r = env.step(a)
            ddpg.store_trans(s, a, r/10, s_)
            if ddpg.index > memory_size:
                ddpg.train_model()
            s = s_
            ep_reward += r
        if i % 1 == 0 and i > 0:
            print('Episode:', i, ' Reward: %i' % int(ep_reward))
    torch.save(ddpg, 'ddpg2.pt')





需要注意的是我这个没有对数据进行处理,主要针对的是单个数据,还没有针对batch数据,因此在数据送入lstm模型之前手动加了个torch.unsqueeze()强行扩展一个维度。
目前程序处在能跑通的阶段,后续有时间的话继续更新吧。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/151665.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 数列极限定义的具体解释(举例)–十分易懂

    数列极限定义的具体解释(举例)–十分易懂数列极限定义的具体解释(举例)–十分易懂自己看书没彻底明白,百度了几个还不错的解释。直接上图吧!这里重点看举例这个解释很好理解了。2.下面的另一种解释指出了N是项数并配图例。如果朋友们还有更好的理解方法,欢迎留言哦!谢谢…

    2022年5月2日
    35
  • 关于用户路径分析模型_spark用户行为路径

    关于用户路径分析模型_spark用户行为路径在网页或者营销渠道中,用户行为模型有比较多,基于渠道的,笔者觉得有:渠道类型渠道重要性渠道跳转与流失单渠道,多节点路径分析,漏斗功能多渠道归因分析这里多渠道指的是,单渠道多节点的场景比较好理解,就是进入某个web\小程序,在不同页面之间进行跳转,多渠道这里比较多的就是,同一用户在不同的较大的场景下的流转,比如在小红书种草->微信好友推荐->淘宝上买了。归因分析是通过一定的逻辑方法,计算每个渠道、或者触点对最终结果贡献程度的方法。有一套合理

    2022年8月24日
    8
  • 90后的我们越长大越孤单

    90后的我们越长大越孤单

    2021年8月9日
    49
  • 用python绘制圆(python用函数绘制椭圆)

    同时需要了解Numpy和Matplotlib相关知识。看代码吧,仔细了解清楚每句代码,每个函数。#-*-coding:utf-8-*-#!python3importnumpyasnpimportmatplotlib.pyplotasplt#==========================================#圆的基本信息#1.圆半径r=2.0#2.圆…

    2022年4月14日
    139
  • CAN通信详解(全)

    本章我们将向大家介绍如何使用STM32自带的CAN控制器来实现两个开发板之间的CAN通讯,并将结果显示在TFTLCD模块上。本章分为如下几个部分:30.1CAN简介30.2硬件设计30.3软件设计30.4下载验证30.1CAN简介CAN是ControllerAreaNetwork的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在当前的汽车产业中,出于对安全…

    2022年4月1日
    70
  • linux搭建FTP服务器步骤

    linux搭建FTP服务器步骤教你如何在 linux 中搭建 ftp 服务器

    2025年7月11日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号