白话空间统计之:Moran’s I(莫兰指数)

白话空间统计之:Moran’s I(莫兰指数)Moran’sI这个东西,官方叫做:莫兰指数,是澳大利亚统计学家帕特里克·阿尔弗雷德·皮尔斯·莫兰(PatrickAlfredPierceMoran),在1950年提出的。一般是用来度量空间相关性的一个重要指标。

大家好,又见面了,我是你们的朋友全栈君。前两天聊了空间统计学里面的两个经典概念,今天来说说第一篇文章留下的大坑:
Moran’s I

首先,Moran’s I这个东西,官方叫做:莫兰指数,是澳大利亚统计学家帕特里克·阿尔弗雷德·皮尔斯·莫兰(Patrick Alfred PierceMoran)(好长的名字,不过一般都简称为:帕克·莫兰,就是下图这位中年帅哥了),在1950年提出的。这一年,朝鲜战争爆发。

白话空间统计之:Moran's I(莫兰指数)

莫兰同学1917年出生在澳大利亚的悉尼,后来考入了剑桥大学,第二次世界大战的时候,加入了盟军,并且因为在数学和物理学上面的特长,被安排在剑桥大学的外弹道学实验室(External Ballistics Laboratory)负责火箭的研究工作。战争结束后,任教于牛津大学,并且就在牛津任教期间,提出了关于莫兰指数的问题。

 

另外再加一点点小花絮,莫兰同学终生未获得博士学位,但是据他晚年回忆,他似乎对这个事情一直感到骄傲(自己并非博士,但是带出了无数的博士生)。

 

那么莫兰指数到底是个啥东西呢?莫兰指数一般是用来度量空间相关性的一个重要指标。

 

一般说来,莫兰指数分为全局莫兰指数(GlobalMoran’s I)和安瑟伦局部莫兰指数(AnselinLocal Moran’s I)后者是美国亚利桑那州立大学地理与规划学院院长Luc Anselin教授1995年提出的,后面我们会说到。

 

今天就简单说说全局莫兰指数,也是狭义上的莫兰指数。

 

莫兰指数是一个有理数,经过方差归一化之后,它的值会被归一化到1.0——1.0之间。(如果有喜欢看数学公式的,我最后贴出了全局莫兰指数的计算公式,这里是科普性质的,我就不贴数学公式来虐待大家的大脑了。

 

当然,这个归一化是一般的情况,根据某些特殊的情况,也会计算出一些不在这个范围内的值,最后来讨论为什么会超出这个范围。

 

全局莫兰指数计算完成之后,全部的要素,就会给出你一个关于全部数据的相关性的数值(反之,局部莫兰指数,就每个要素都会给你一个相关性数值了,这个以后在说)。所以我们可以根据他给出的值,来看当前你需要计算的数据结果了。

 

Moran’s I >0表示空间正相关性,其值越大,空间相关性越明显,Moran’s I <0表示空间负相关性,其值越小,空间差异越大,否则,Moran’s I = 0,空间呈随机性

 

这里需要注意一下啊,空间差异和空间异质性是不同的概念。

 

空间差异(spatialdisparity)是指不同地域范畴因为(社会、经济等)发展水平及其结构不同,而产生的差异。

 

而空间异质性(spatialheterogeneity)是指因为空间位置的不同而引发的获取到不同的数据。

 

所以二者切不可混为一谈。

 

最后,我们们来看看,什么叫做正相关,什么叫做负相关。

 

所谓的相关,就是指相互关系,正相关,就是随着自变量的增长,应变量也随着增长,比如虾神的年纪和血压,就是标准的正相关……。而负相关当然就是相反了,随着自变量的增长而减少,比如虾神的年纪和体力……

 

那么空间上面的正相关,就是指随着空间分布位置(距离)的聚集,相关性就也就越发显著。空间上的负相关就正好相反了,随着空间分布位置的离散,反而相关性变得显著了。

 

像如下我采用中国行政区划计算出来的结果:

白话空间统计之:Moran's I(莫兰指数)

整个图表可以看出来,人口数和患病的人数,都与空间信息成正相关,就是说,空间分布聚集度大的地方,人口数和患病人数也相应多。

 

但是可以看见的,患病人数,随着时间推移,他的莫兰指数在上升,而人口数随着年份,莫兰指数在下降,这说明了中国人口的数量慢慢的与空间分布的相关性在减弱,而患病人数与空间分布的相关性在增加。

 

当然,莫兰指数只是在衡量空间相关性时候的一个重要指标,并不完全能够代表空间相关性,还需要有其他的数据进行验证和综合考量。

 

下面部分部分仅供不怕死脑细胞的同学参考:(来源于ArcGIS for Destkop的帮助文档)

1、全局莫兰指数的公式:

白话空间统计之:Moran's I(莫兰指数)

2、刚才讨论了,莫兰指数一般是在1——1之间,那么有时候突然算出来超出这个区间的数据,是怎么回事呢?是不是软件出了bug

答案是和软件bug无关。

通常,Global Moran’s I 指数介于 -1.0 到 1.0 之间。只有对我们权重进行了行标准(行标准化的意思,就是在做空间距离矩阵的时候,对矩阵中的每一行,求和后,每个元素除以所在行元素之和这种标准化操作)时才会这样。如果没有对权重进行行标准化处理,则指数值可能会落在-1.0 到 1.0 的范围之外,这表示参数设置有问题。最常见的问题如下:

  1. 输入的数据严重偏斜(创建数据值的直方图可了解此情况),空间关系的概念化或距离范围的设置使得某些要素的相邻要素非常少。Global Moran’s I 统计量是渐进正态的,这意味着,对于偏斜数据,每个要素至少需要具有 8 个相邻要素。为距离范围或距离阈值参数计算的默认值可确保每个要素至少具有 1 个相邻要素,但这可能不够,尤其是在输入数据中的有的出现严重偏斜时。
  2. 使用反距离空间关系的概念化,并且反距离非常小。

关于反距离过小的问题,是因为在选择反距离的幂的时候,为了突出拉伸,选择了一个过高的幂,这样就会把反距离(距离的倒数)变得非常的小。看下面关于反距离中幂的说明:

白话空间统计之:Moran's I(莫兰指数)


     3.未选择行标准化,但应选择。除非聚合方案与所分析的字段直接相关,否则,只要对数据进行了聚合处理,就应选择行标准化。

 

      好,关于全局莫兰值的介绍今天先到这里,下次我们来看看在ArcGIS里面如何使用这个工具来进行计算。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/153049.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 数据挖掘算法和实际应用案例

    数据挖掘算法和实际应用案例第一次写博客,这次主要引用Little_Rookie大佬的一篇博客,主要来说明一下数据挖掘的主要算法和分类,以及实际生活中的应用案例,同时也是为了方便自己以后的学习。如何分辨出垃圾邮件”、“如何判断一笔交易是否属于欺诈”、“如何判断红酒的品质和档次”、“扫描王是如何做到文字识别的”、“如何判断佚名的著作是否出自某位名家之手”、“如何判断一个细胞是否属于肿瘤细胞”等等,这些问题似乎都很专业,都…

    2022年6月16日
    32
  • JVM参数汇总:JVM内存设置多大合适?Xmx和Xmn如何设置?[通俗易懂]

    JVM参数汇总链接:[#link](https://www.cnblogs.com/duanxz/p/3482366.html)一、java启动参数共分为三类:其一是标准参数(-),所有的JVM实现都必须实现这些参数的功能,而且向后兼容;其二是非标准参数(-X),默认jvm实现这些参数的功能,但是并不保证所有jvm实现都满足,且不保证向后兼容…

    2022年4月17日
    35
  • 跨平台数据整合系统_lvc异构系统

    跨平台数据整合系统_lvc异构系统1.muleESB整合系统四种模式A.简单服务模式属于几个webService之间的同步调用,请求响应处理模式。B.桥接模式C.校验器模式校验器模式通过定义一个校验过滤器过滤服务请求,并同步返回

    2022年8月2日
    9
  • ireport使用教程视频_proe拖动图形

    ireport使用教程视频_proe拖动图形iReport使用教程【原创】iReport与JasperReport简介1.1  简介JasperReport是报表的引擎部分,界面设计是用iReport。为什么选择这两个软件呢?因为这两个软件都是开源的,即免费的(虽然某些文档收费,但是磨灭不了我们使用它的理由)。JasperReport是一个报表制作程序,用户按照它制定的规则编写一个XML文件,然后得到用户需要输出的

    2022年9月11日
    4
  • 吐槽下安卓手机_吐槽手机像素不好的说说

    吐槽下安卓手机_吐槽手机像素不好的说说吐槽下安卓手机安卓手机的问题:1、安卓的机子运行时间长了,都需要折腾的,这就跟电脑一样,3-6个月恢复一次系统才快。很少有安卓系统不预装自己的软件的。2、安卓手机为了炒作,很多配备多核CPU,导致发热量很大,掉电很快,手机发烫厉害影响手感。3、曲面屏,这是营销炒作出来的卖点,曲面屏由于外框没有保护,很容易摔碎,而且也有误触的问题。4、有些手机采用了窄边框,而误触处理没有做好,导致用户体验极差,这不…

    2022年9月2日
    6
  • 全景视频拼接关键技术

    全景视频拼接关键技术一、原理介绍图像拼接(ImageStitching)是一种利用实景图像组成全景空间的技术,它将多幅图像拼接成一幅大尺度图像或360度全景图,图像拼接技术涉及到计算机视觉、计算机图形学、数字图像处理以及一些数学工具等技术。图像拼接其基本步骤主要包括以下几个方面:摄相机的标定、传感器图像畸变校正、图像的投影变换、匹配点选取、全景图像拼接(融合),以及亮度与颜色的均衡处理等

    2022年4月16日
    36

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号