深度学习之softmax损失函数[通俗易懂]

深度学习之softmax损失函数[通俗易懂]深度学习之softmax损失函数归一化向量的每个元素均大于0小于1,且和为1,所以可以将其看作归属各个类别的概率。损失函数可以看作真实类别的负对数概率,希望其越小。importnumpyasnpD=784K=10N=128#scores是分值矩阵,每行代表一个样本scores=np.random.randn(N,K)print(scores.shape)#样本标签y=np.random.randint(K,size=N)print(y.shape)#指数化分值矩

大家好,又见面了,我是你们的朋友全栈君。

深度学习之softmax损失函数

  • 归一化向量的每个元素均大于0小于1,且和为1 ,所以可以将其看作归属各个类别的概率。
  • 损失函数可以看作真实类别的负对数概率,希望其越小。
  • 优化:基于模型得到分值向量,根据损失函数评价参数的好坏,寻找最优的参数,是损失最小。
  • 优化方法:梯度下降法,牛顿法

机器学习一般包含两类参数:超参数和参数。超参数的数目通常不多,在10以内; 参数的数目可能很多,如卷积神经网络中有近千万个参数(权重)。曲线拟合中,方程的次数就是超参数,多项式的系数是参数。这两种参数的调参方式不同,超参数的取值一般是人工设定的,参数值是根据参数优化算法自动寻优的。目前出现了很多超参数自动优化算法。

import numpy as np

D=784 # 数据维度
k=10 # 类别数
N=128 # 样本数量

#scores是分值矩阵,每行代表一个样本
scores=np.random.randn(N,K)
print(scores.shape)
#样本标签
y = np.random.randint(K,size=N)
print(y.shape)
#指数化分值矩阵
exp_scores=np.exp(scores)
#得到样本归一化系数, 对每一行求和
# axis = 0,代表同一列
# axis = 1,代表同一行
exp_scores_sum=np.sum(exp_scores,axis=1)
print(exp_scores_sum.shape)
#样本真实类别的归一化分值, 矩阵索引方式
correct_probs=exp_scores[range(N),y]/exp_scores_sum
print(correct_probs.shape)
#负对数损失函数
correct_logprobs=-np.log(correct_probs)
print(correct_logprobs.shape)
#平均损失函数
data_loss=np.sum(correct_logprobs)/N
print(data_loss.shape)
(128, 10)
(128,)
(128,)
(128,)
(128,)
()
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/153130.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • docker下载安装教程_centos一键安装docker

    docker下载安装教程_centos一键安装docker前言Docker提供轻量的虚拟化,你能够从Docker获得一个额外抽象层,你能够在单台机器上运行多个Docker微容器,而每个微容器里都有一个微服务或独立应用,例如你可以将Tomcat运行在一个D

    2022年7月31日
    2
  • pytest的assert_Python断言

    pytest的assert_Python断言前言断言是写自动化测试基本最重要的一步,一个用例没有断言,就失去了自动化测试的意义了。什么是断言呢?简单来讲就是实际结果和期望结果去对比,符合预期那就测试pass,不符合预期那就测试failed

    2022年7月31日
    2
  • uat环境和生产环境的区别_angular 生产环境 相对路径无效

    uat环境和生产环境的区别_angular 生产环境 相对路径无效 本人研发小白一名,时间:2017年12月21(周四),坐标:上海。项目上线,测试环境正常,上UAT环境后访问不到数据,于是开始步步分析,细细琢磨,最终成功上UAT,但影响了上生产环境的时间,造成项目延时发布,第一次遇到这么奇怪的事情,之后就是2017年12月26(周二)的上生产环境,不过可怕的事情还是发生了:本地、测试、UAT环境都正常,生产环境有访问不到数据,直到12月27号2:00才解决,…

    2022年9月30日
    0
  • webstorm2021.4激活码_通用破解码

    webstorm2021.4激活码_通用破解码,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月16日
    130
  • Windows CMD命令总结及使用介绍

    Windows CMD命令总结及使用介绍

    2021年9月14日
    51
  • 22.IMU和里程计融合

    22.IMU和里程计融合1.概述实际使用中会出现轮子打滑和累计误差的情况,这里单单使用编码器得到里程计会出现一定的偏差,虽然激光雷达会纠正,但一个准确的里程对这个系统还是较为重要2.IMU数据获取IMU即为惯性测量单元,一般包含了三个单轴的加速度计和三个单轴的陀螺仪,简单理解通过加速度二次积分就可以得到位移信息、通过角速度积分就可以得到三个角度,实时要比这个复杂许多2.1PIBOTIMU…

    2022年6月29日
    147

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号