求逆矩阵的方法「建议收藏」

求逆矩阵的方法「建议收藏」一般求逆矩阵的方法有两种,伴随阵法和初等变换法。但是这两种方法都不太适合编程。伴随阵法的计算量大,初等变换法又难以编程实现。适合编程的求逆矩阵的方法如下:

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

一般求逆矩阵的方法有两种,伴随阵法和初等变换法。但是这两种方法都不太适合编程。伴随阵法的计算量大,初等变换法又难以编程实现。
适合编程的求逆矩阵的方法如下:
1、对可逆矩阵A进行QR分解:A=QR
2、求上三角矩阵R的逆矩阵
3、求出A的逆矩阵:A^(-1)=R^(-1)Q^(H)
以上三步都有具体的公式与之对应,适合编程实现。
C语言实现代码:

#include <stdio.h>
#include <math.h>

#define SIZE 8

double b[SIZE][SIZE]={
  
  0};//应该读作“贝尔塔”,注释中用B表示
double t[SIZE][SIZE]={
  
  0};//求和的那项
double Q[SIZE][SIZE]={
  
  0};//正交矩阵
double QH[SIZE][SIZE]={
  
  0};//正交矩阵的转置共轭
double R[SIZE][SIZE]={
  
  0};//
double invR[SIZE][SIZE]={
  
  0};//R的逆矩阵
double invA[SIZE][SIZE]={
  
  0};//A的逆矩阵,最终的结果
//={0};//
double matrixR1[SIZE][SIZE]={
  
  0};
double matrixR2[SIZE][SIZE]={
  
  0};

//double init[3][3]={3,14,9,6,43,3,6,22,15};
double init[8][8]={  
    0.0938  ,  0.5201 ,   0.4424  ,  0.0196  ,  0.3912  ,  0.9493 ,   0.9899  ,  0.8256,
    0.5254  ,  0.3477 ,   0.6878  ,  0.3309 ,   0.7691  ,  0.3276 ,   0.5144  ,  0.7900,
    0.5303  ,  0.1500 ,   0.3592  ,  0.4243 ,   0.3968  ,  0.6713 ,   0.8843  ,  0.3185,
    0.8611  ,  0.5861 ,   0.7363  ,  0.2703 ,   0.8085  ,  0.4386 ,   0.5880  ,  0.5341,
    0.4849  ,  0.2621 ,   0.3947  ,  0.1971 ,   0.7551  ,  0.8335 ,   0.1548  ,  0.0900,
    0.3935  ,  0.0445 ,   0.6834  ,  0.8217 ,   0.3774  ,  0.7689 ,   0.1999  ,  0.1117,
    0.6714  ,  0.7549 ,   0.7040  ,  0.4299 ,   0.2160  ,  0.1673 ,   0.4070  ,  0.1363,
    0.7413  ,  0.2428 ,   0.4423  ,  0.8878 ,   0.7904  ,  0.8620 ,   0.7487  ,  0.6787
};
/*/ 函数名:int main() 输入: 输出: 功能:求矩阵的逆 pure C language 首先对矩阵进行QR分解之后求上三角矩阵R的逆阵最后A-1=QH*R-1,得到A的逆阵。 作者:HLdongdong *//////////////////////////////////////////////////////////////////////
int main()
{
    int i;//数组 行
    int j;//数组 列
    int k;//代表B的角标
    int l;//数组 列
    double dev;
    double numb;//计算的中间变量
    double numerator,denominator;
    double ratio;
    /////////////////求B/////////////////
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            b[j][i]=init[j][i];
        }
        for(k=0;k<i;++k)
        {
            if(i)
            {
                numerator=0.0;
                denominator=0.0;
                for(l=0;l<SIZE;++l)
                {
                    numerator+=init[l][i]*b[l][k];
                    denominator+=b[l][k]*b[l][k];
                }
                dev=numerator/denominator;
                t[k][i]=dev;
                for(j=0;j<SIZE;++j)
                {
                    b[j][i]-=t[k][i]*b[j][k];//t init =0 !!!
                }
            }
        }
    }
    ///////////////////对B单位化,得到正交矩阵Q矩阵////////////////////
    for(i=0;i<SIZE;++i)
    {
        numb=0.0;
        for(j=0;j<SIZE;++j)
        {
            numb+=(b[j][i]*b[j][i]);
        }
        dev=sqrt(numb);
        for(j=0;j<SIZE;++j)
        {
            Q[j][i]=b[j][i]/dev;
        }
        matrixR1[i][i]=dev;
    }
    /////////////////////求上三角R阵///////////////////////
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            if(j<i)
            {
                matrixR2[j][i]=t[j][i];
            }
            else if(j==i)   
            {
                matrixR2[j][i]=1;
            }
            else
            {
                matrixR2[j][i]=0;
            }
        }
    }
    mulMatrix(matrixR1,matrixR2,SIZE,SIZE,SIZE,R);
///////////////////////QR分解完毕//////////////////////////
    printf("QR分解:\n");
    printf("Q=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf("%2.4f ",Q[i][j]);
        // 
        }
        printf("\n");
    }
    printf("R=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf("%2.4f ",R[i][j]);
        // 
        }
        printf("\n");
    }
/////////////////////求R的逆阵//////////////////////////
    for(i=SIZE-1;i>=0;--i)
    {
        invR[i][i]=1/R[i][i];
        //R[i][i]=invR[i][i];
        if(i!=(SIZE-1))//向右
        {
            for(j=i+1;j<SIZE;++j)
            {
                invR[i][j]=invR[i][j]*invR[i][i];
                R[i][j]=R[i][j]*invR[i][i];
            }
        }
        if(i)//向上
        {
            for(j=i-1;j>=0;--j)
            {
                ratio=R[j][i];
                for(k=i;k<SIZE;++k)
                {
                    invR[j][k]-=ratio*invR[i][k];
                    R[j][k]-=ratio*R[i][k];
                }
            }   
        }
    }

///////////////////////////////////////////////////////

    printf("inv(R)=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf(" %2.4f ",invR[i][j]);
        // 
        }
        printf("\n");
    }
////////////////////结果和MATLAB差一个负号,神马鬼????????/////////////////////
/////////////////////求QH//////////////////////////
    for(i=0;i<SIZE;++i)//实矩阵就是转置
    {
        for(j=0;j<SIZE;++j)
        {
            QH[i][j]=Q[j][i];
        }
    }
///////////////////////求A的逆阵invA/////////////////////////////

    mulMatrix(invR,QH,SIZE,SIZE,SIZE,invA);

    printf("inv(A)=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf(" %2.4f ",invA[i][j]);
        // 
        }
        printf("\n");
    }

///////////////////////结果与MATLAB的结果在千分位后有出入,但是负号都是对的^v^///////////////////////////
    return 0;
}

另附上矩阵乘法的子函数

/*/
函数名:void mulMatrix(double matrix1[SIZE][SIZE],double matrix2[SIZE][SIZE],int high1,int weight,int weight2,double mulMatrixOut[SIZE][SIZE])
输入:依次是 左矩阵,右矩阵,左矩阵高度,左矩阵宽度,右矩阵宽度,输出矩阵
输出:
功能:矩阵乘法
作者:HLdongdong
*//
void mulMatrix(double matrix1[SIZE][SIZE],double matrix2[SIZE][SIZE],int high1,int weight,int weight2,double mulMatrixOut[SIZE][SIZE])
{
 int i,j,k;
 for(i=0;i<high1;++i)
 { 
   
 for(j=0;j<weight2;j++)
 { 
   
 for(k=0;k<weight;++k)
 { 
   
 mulMatrixOut[i][j]+=matrix1[i][k]*matrix2[k][j];
 }
 }
 }
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/171646.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Dubbo分布式服务框架入门(附工程)

    Dubbo分布式服务框架入门(附工程)

    2020年11月12日
    168
  • word打印A4纸翻页小册子设置「建议收藏」

    word打印A4纸翻页小册子设置「建议收藏」要实现的是A4纸对折成翻页的小册子在word里选页面布局设置如下:还有页脚的页数显示要改成左页的页数在左下角,右页的页数在右下角:有页码显示时双击页脚会出来页码设置,选择双面打印2。转成pdf:点打印图标,选择导出pdf…

    2022年9月6日
    4
  • Java的8个Java日志工具[通俗易懂]

    摘要:本文要来分享一些Java程序员最常用的Java日志框架组件。日志工具log4j–最受欢迎的Java日志组件Log4j是一款基于Java的开源日志组件,Log4j功能非常强大,我们可以将日志信息输出到控制台、文件、用户界面,也可以输出到操作系统的事件记录器和一些系统常驻进程。更值得一提的是,Log4j可以允许你非常便捷地自定义日志格式和日志等级,可以帮助开发人员全方位地掌控…

    2022年4月9日
    495
  • linux配置虚拟IP地址方法「建议收藏」

    linux配置虚拟IP地址方法「建议收藏」linux配置虚拟IP地址方法在日常linux管理工作中,需要为应用配置单独的IP地址,以达到主机与应用的分离,在应用切换与迁移过程中可以做到动态切换,特别是在使用HA的时候,这种方案可以保证主机与应用的隔离,对日常的运维有很大的益处.但在有些应用中还没有配置HA,后期需要配置HA时,我们可以先配置虚拟IP给在线的应用使用,这要后期的系统运维可以做到更好的可扩展性.本文主要是对IP地址

    2022年10月20日
    0
  • Eclipse 汉化教程完美版

    Eclipse 汉化教程完美版1.首先查看自己的Eclipse版本号点来Help中的AboutEclipse,我的是最新版本的Oxygen。2、去官网上找对应的汉化安装包路径浏览器打开网址 http://www.eclipse.org/babel/downloads.php 找到对应自己版本的安装包我的是http://archive.eclipse.org/technology/babel/update-site/R0.15…

    2022年6月5日
    28
  • vs 错误LNK2019 无法解析的外部符号 __imp__PathFileExistsA@

    vs 错误LNK2019 无法解析的外部符号 __imp__PathFileExistsA@尝试:在main函数前添加:#pragmacomment(lib,”Shlwapi.lib”)

    2022年7月14日
    12

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号