Cortex m33_STM32F4

Cortex m33_STM32F4Cortex-M3Bit-Banding1.概述CM3的存储器系统支持所谓的“位带”(bit-band)操作。通过它,实现了对单一bit的原子操作。位带操作仅适用于一些特殊的存储器区域中。从汇编角度看:与传统方法的比较:在位带区中,每个比特都映射到别名地址区的一个字——这是个只有LSB才有效的字。支持位带操作的两个内存区的范围是:**0x2000_0000-0x

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

Cortex-M3 Bit-Banding

1. 概述

CM3的存储器系统支持所谓的“位带”(bit-band)操作。
通过它,实现了对单一bit的原子操作。位带操作仅适用于一些特殊的存储器区域中。
位带区与位带别名区对应关系

从汇编角度看:
bitbanding对应关系汇编角度
与传统方法的比较:
与传统方法的比较
在位带区中,每个比特都映射到别名地址区的一个字——这是个只有 LSB才有效的字。

支持位带操作的两个内存区的范围是:
**0x2000_0000-0x200F_FFFF(SRAM区中的最低 1MB)
0x4000_0000-0x400F_FFFF(片上外设区中的最低1MB) **

2. 优点

  • 位带操作对于硬件 I/O密集型的底层程序最有用处了;
  • 位带操作还能用来化简跳转的判断。
    当跳转依据是某个位时,以前必须这样做:
    读取整个寄存器
    掩蔽不需要的位
    比较并跳转
    现在只需:
    从位带别名区读取状态位
    比较并跳转
  • 位带操作还有一个重要的好处是在多任务中,用于实现共享资源在任务间的“互锁”访问;
    多任务的共享资源必须满足一次只有一个任务访问它——亦即所谓的“原子操作”。
    以前的读-改-写需要 3 条指令,导致这中间留有两个能被中断的空当。
    于是可能会出现如下图所示的紊乱危象:
    多任务操作非原子访问
    同样的紊乱危象可以出现在多任务的执行环境中.其实,上图所演示的情况可以看作是多任
    务的一个特例:主程序是一个任务,ISR是另一个任务,这两个任务并发执行。
    通过使用 CM3的位带操作,就可以消灭上例中的紊乱危象。CM3把这个“读-改-写”做成一
    个硬件级别支持的原子操作,不能被中断,如下图:
    bit-banding原子操作

3. 其它数据长度上的位带操作

位带操作并不只限于以字为单位的传送。亦可以按半字和字节为单位传送。例如,可以使用
LDRB/STRB来以字节为长度单位去访问位带别名区,同理可用于 LDRH/STRH。但是不管用哪一个对
子,都必须保证目标地址对齐到字的边界上。

4. 在 C语言中使用位带操作

//把“位带地址+位序号”转换成别名地址的宏
#define BITBAND(addr, bitnum) ((addr & 0xF0000000) + 0x20000000 + ((addr & 0xFFFFF) << 5) + (bit<<2));

//把该地址转换成一个指针
#define MEM_ADDR(addr) *((volatile unsigned long *) (adr));

在此基础上,我们就可以如下改写代码:

MEM_ADDR(DEVICE REG0) = 0xAB; //使用正常地址访问寄存器,即把0xAB作为DEVICE REG0地址上的值
MEM_ADDR(DEVICE_REG0) = MEM_ADDR(DEVICE_REG0) | 0x2; //传统做法
MEM_ADDR(BITBAND(DEVICE_REG0, 1)) = 0x1//使用位带别名地址

请注意:当使用位带功能时,要访问的变量必须用 volatile来定义。因为 C编译器并不知道同一个比特可以有两个地址。所以就要通过 volatile,使得编译器每次都如实地把新数值写入存储器,而不再会出于优化的考虑,在中途使用寄存器来操作数据的副本,直到最后才把副本写回——这会导致按不同的方式访问同一个位会得到不一致的结果(可能被优化到不同的寄存器来保存中间结果——译注)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/183797.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 5G学习笔记:NSA和SA

    5G学习笔记:NSA和SA大家好,我是小枣君。第一个5G正式标准马上就要发布了,相信大家一定都在翘首企盼。之前我曾经和大家介绍过,去年12月份的时候,我们其实已经发布了“半个”5G标准。是的没错,那个时候是“非独立组网(NSA)”的5G标准。而我们现在正在等的,是“独立组网(SA)”的5G标准。关于非独立组网和独立组网,NSA和SA,虽然大家都听了很多次,但很少有人能真正搞懂它们到底是怎么…

    2022年10月25日
    0
  • 各大型邮箱smtp服务器及端口收集

    各大型邮箱smtp服务器及端口收集

    2021年9月21日
    54
  • 查看linux执行的命令记录_shell 调用history

    查看linux执行的命令记录_shell 调用history前言我们每次敲打linux命令的时候,有时候想用之前用过的命令,一般情况下,我们都会按↑↓箭头来寻找历史的命令记录,那如果我想用1天前执行的某条命令,难道还要按↑100次?显示这样是不现实的,我们可

    2022年7月30日
    3
  • sql语句大全(详细)

    sql语句大全(详细)数据库操作查看所有数据库showdatabases;查看当前使用的数据库selectdatabase();创建数据库createdatabases数据库名charset=utf8;5.删除数据库dropdatabase数据库名6.使用数据句库usedatabase数据库名7.查看数据库中所有表showtables;表的操作1…

    2022年4月30日
    35
  • 《生物化学与分子生物学》—-绪论—-听课笔记(一)

    《生物化学与分子生物学》—-绪论—-听课笔记(一)[华中科技大学]生物化学与分子生物学绪论1.1生物化学与分子生物学绪论(1)生物化学(Biochemistry、Biologicalchemistry):研究生物体(微生物、植物、动物及人体)的化学组成和生命过程中的化学变化规律的科学。 分子生物学(MolecularBiology):生物化学有机地融合了微生物学、遗传学和细胞生物学的有关知识—-形成了现代的分子生物学。它…

    2022年7月11日
    11
  • 分布式Session一致性入门简介

    Session简介是什么?Session在网络中表示“会话控制”,用于存储特定用户所需的属性和其他的配置信息;Session表示一个特定的时间间隔,可以指用户从登陆系统到注销退出系统之家的时间。为什么出现?因为http 是一种无状态协议,如果没有Session的话,服务器无法识别请求是否来自同一个用户! 在一些业务场景中需要知道前面的操作和后台的操作是不是同一个用户…

    2022年2月27日
    42

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号