LSTM模型详解_LSTM模型建立

LSTM模型详解_LSTM模型建立(一)LSTM模型理解1.长短期记忆模型(long-shorttermmemory)是一种特殊的RNN模型,是为了解决RNN模型梯度弥散的问题而提出的;在传统的RNN中,训练算法使用的是BPTT,当时间比较长时,需要回传的残差会指数下降,导致网络权重更新缓慢,无法体现出RNN的长期记忆的效果,因此需要一个存储单元来存储记忆,因此LSTM模型被提出;2.下面两个图可以看出RNN与LSTM的区别:…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

(一)LSTM模型理解

1.长短期记忆模型(long-short term memory)是一种特殊的RNN模型,是为了解决RNN模型梯度弥散的问题而提出的;在传统的RNN中,训练算法使用的是BPTT,当时间比较长时,需要回传的残差会指数下降,导致网络权重更新缓慢,无法体现出RNN的长期记忆的效果,因此需要一个存储单元来存储记忆,因此LSTM模型被提出;

2.下面两个图可以看出RNN与LSTM的区别:

(1)RNN

LSTM模型详解_LSTM模型建立

(2)LSTM

LSTM模型详解_LSTM模型建立

PS:

(1)部分图形含义如下:

LSTM模型详解_LSTM模型建立

(2)RNN与LSTM最大的区别在于LSTM中最顶层多了一条名为“cell state”的信息传送带,其实也就是信息记忆的地方;

3.LSTM的核心思想:

(1)理解LSTM的核心是“cell state”,暂且名为细胞状态,也就是上述图中最顶的传送线,如下:

LSTM模型详解_LSTM模型建立

(2)cell state也可以理解为传送带,个人理解其实就是整个模型中的记忆空间,随着时间而变化的,当然,传送带本身是无法控制哪些信息是否被记忆,起控制作用的是下面将讲述的控制门(gate);

(3)控制门的结构如下:主要由一个sigmoid函数跟点乘操作组成;sigmoid函数的值为0-1之间,点乘操作决定多少信息可以传送过去,当为0时,不传送,当为1时,全部传送;

LSTM模型详解_LSTM模型建立

(4)LSTM中有3个控制门:输入门,输出门,记忆门;

4.LSTM工作原理:

(1)forget gate:选择忘记过去某些信息:

LSTM模型详解_LSTM模型建立

(2)input gate:记忆现在的某些信息:

LSTM模型详解_LSTM模型建立

(3)将过去与现在的记忆进行合并:

LSTM模型详解_LSTM模型建立

(4)output gate:输出

LSTM模型详解_LSTM模型建立

PS:以上是标准的LSTM的结构,实际应用中常常根据需要进行稍微改善;

5.LSTM的改善

(1)peephole connections:为每个门的输入增加一个cell state的信号

LSTM模型详解_LSTM模型建立

(2)coupled forget and input gates:合并忘记门与输入门

LSTM模型详解_LSTM模型建立

(二)LSTM模型推导

LSTM模型详解_LSTM模型建立

1.LSTM模型的思想是将RNN中的每个隐藏单元换成了具有记忆功能的cell(如上图所示),其余的跟RNN一样;

2.每个cell的组成如下:

(1)输入节点(gc):与RNN中的一样,接受上一个时刻点的隐藏节点的输出以及当前的输入作为输入,然后通过一个tanh的激活函数;

(2)输入门(ic):起控制输入信息的作用,门的输入为上一个时刻点的隐藏节点的输出以及当前的输入,激活函数为sigmoid(原因为sigmoid的输出为0-1之间,将输入门的输出与输入节点的输出相乘可以起控制信息量的作用);

(3)内部状态节点(sc):输入为被输入门过滤后的当前输入以及前一时间点的内部状态节点输出,如图中公式;

(4)忘记门(fc):起控制内部状态信息的作用,门的输入为上一个时刻点的隐藏节点的输出以及当前的输入,激活函数为sigmoid(原因为sigmoid的输出为0-1之间,将内部状态节点的输出与忘记门的输出相乘可以起控制信息量的作用);

(5)输出门(oc):起控制输出信息的作用,门的输入为上一个时刻点的隐藏节点的输出以及当前的输入,激活函数为sigmoid(原因为sigmoid的输出为0-1之间,将输出门的输出与内部状态节点的输出相乘可以起控制信息量的作用);

3.LSTM层的计算可以表示如下(若干个cell组成一个LSTM层):

LSTM模型详解_LSTM模型建立

PS:公式1 中的Wih应改为Wgh;圆圈表示点乘;

4.具有2个cell的LSTM模型如下:

LSTM模型详解_LSTM模型建立

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/195049.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • pkpm卸载后无法安装_正在安装的软件删不掉

    pkpm卸载后无法安装_正在安装的软件删不掉1.卸载原有旧的版本:npmuninstall-gcnpm–registry=https://registry.npm.taobao.org2.注册淘宝模块镜像:npmsetregistryhttps://registry.npm.taobao.org3.node-gyp编译依赖的node源码镜像npmsetdisturlhttps://npm.taobao.org/dist4.清空缓存npmcacheclean–force5.重

    2022年8月31日
    2
  • Robots.txt – 禁止爬虫

    Robots.txt – 禁止爬虫

    2021年10月9日
    328
  • print和println和printf的区别_print输出格式

    print和println和printf的区别_print输出格式print–是函数,可以返回一个值,只能有一个参数。println–与print唯一的区别是println换行输出。printf–函数,把文字格式化以后输出,直接调用系统调用进行IO的,他是非缓冲的。如:$name=”hunte”;$age=25;printf(“mynameis%s,age%d”,$name,$age);sprintf–跟pr

    2022年10月2日
    0
  • python表情代码_Python实现表情包的代码实例[通俗易懂]

    python表情代码_Python实现表情包的代码实例[通俗易懂]本文主要介绍了使用Python进行简单图像处理的方法以及Python自动生产表情包的实例,具有很好的参考价值,下面跟着小编一起来看下吧作为一个数据分析师,应该信奉一句话——“一图胜千言”。不过这里要说的并不是数据可视化,而是一款全民向的产品形态——表情包!!!!表情包不仅仅是一种符号,更是一种文化——是促进社交乃至社会发展的动力之一,就像懒。我们坚持认为,一张优秀的表情包,应该是一幅艺术品,是那忽…

    2022年10月29日
    0
  • android 自定义progressdialog,自定义ProgressDialog

    android 自定义progressdialog,自定义ProgressDialog最近工作中需要用到progressDialog,可是系统自带的黑色progressDialog又是其丑无比,无奈只能自己自定义了,在网上查看别人的例子,并自己整理了一份Demo:先上图:MyProgressDialog:packagecom.example.myprogressdialog_zzw;importandroid.app.Dialog;importandroid.content….

    2022年7月14日
    21
  • linux udp编程_linux中socket编程

    linux udp编程_linux中socket编程本文主要描述了linux中UDP编程中的相关细节,涉及到点对点通信,组播,广播等

    2022年9月8日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号