MySQL 对于千万级的大表要怎么优化?

MySQL 对于千万级的大表要怎么优化?

作者:zhuqz

链接:https://www.zhihu.com/question/19719997/answer/81930332

来源:知乎

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

很多人第一反应是各种切分;我给的顺序是:
第一优化你的sql和索引;

第二加缓存,memcached,redis;

第三以上都做了后,还是慢,就做主从复制或主主复制,读写分离,可以在应用层做,效率高,也可以用三方工具,第三方工具推荐360的atlas,其它的要么效率不高,要么没人维护;

第四如果以上都做了还是慢,不要想着去做切分,mysql自带分区表,先试试这个,对你的应用是透明的,无需更改代码,但是sql语句是需要针对分区表做优化的,sql条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,另外分区表还有一些坑,在这里就不多说了;

第五如果以上都做了,那就先做垂直拆分,其实就是根据你模块的耦合度,将一个大的系统分为多个小的系统,也就是分布式系统;

第六才是水平切分,针对数据量大的表,这一步最麻烦,最能考验技术水平,要选择一个合理的sharding key,为了有好的查询效率,表结构也要改动,做一定的冗余,应用也要改,sql中尽量带sharding key,将数据定位到限定的表上去查,而不是扫描全部的表;

mysql数据库一般都是按照这个步骤去演化的,成本也是由低到高;

有人也许要说第一步优化sql和索引这还用说吗?的确,大家都知道,但是很多情况下,这一步做的并不到位,甚至有的只做了根据sql去建索引,根本没对sql优化(中枪了没?),除了最简单的增删改查外,想实现一个查询,可以写出很多种查询语句,不同的语句,根据你选择的引擎、表中数据的分布情况、索引情况、数据库优化策略、查询中的锁策略等因素,最终查询的效率相差很大;优化要从整体去考虑,有时你优化一条语句后,其它查询反而效率被降低了,所以要取一个平衡点;即使精通mysql的话,除了纯技术面优化,还要根据业务面去优化sql语句,这样才能达到最优效果;你敢说你的sql和索引已经是最优了吗?

再说一下不同引擎的优化,myisam读的效果好,写的效率差,这和它数据存储格式,索引的指针和锁的策略有关的,它的数据是顺序存储的(innodb数据存储方式是聚簇索引),他的索引btree上的节点是一个指向数据物理位置的指针,所以查找起来很快,(innodb索引节点存的则是数据的主键,所以需要根据主键二次查找);myisam锁是表锁,只有读读之间是并发的,写写之间和读写之间(读和插入之间是可以并发的,去设置concurrent_insert参数,定期执行表优化操作,更新操作就没有办法了)是串行的,所以写起来慢,并且默认的写优先级比读优先级高,高到写操作来了后,可以马上插入到读操作前面去,如果批量写,会导致读请求饿死,所以要设置读写优先级或设置多少写操作后执行读操作的策略;myisam不要使用查询时间太长的sql,如果策略使用不当,也会导致写饿死,所以尽量去拆分查询效率低的sql,

innodb一般都是行锁,这个一般指的是sql用到索引的时候,行锁是加在索引上的,不是加在数据记录上的,如果sql没有用到索引,仍然会锁定表,mysql的读写之间是可以并发的,普通的select是不需要锁的,当查询的记录遇到锁时,用的是一致性的非锁定快照读,也就是根据数据库隔离级别策略,会去读被锁定行的快照,其它更新或加锁读语句用的是当前读,读取原始行;因为普通读与写不冲突,所以innodb不会出现读写饿死的情况,又因为在使用索引的时候用的是行锁,锁的粒度小,竞争相同锁的情况就少,就增加了并发处理,所以并发读写的效率还是很优秀的,问题在于索引查询后的根据主键的二次查找导致效率低;

ps:很奇怪,为什innodb的索引叶子节点存的是主键而不是像mysism一样存数据的物理地址指针吗?如果存的是物理地址指针不就不需要二次查找了吗,这也是我开始的疑惑,根据mysism和innodb数据存储方式的差异去想,你就会明白了,我就不费口舌了!

所以innodb为了避免二次查找可以使用索引覆盖技术,无法使用索引覆盖的,再延伸一下就是基于索引覆盖实现延迟关联;不知道什么是索引覆盖的,建议你无论如何都要弄清楚它是怎么回事!

尽你所能去优化你的sql吧!说它成本低,却又是一项费时费力的活,需要在技术与业务都熟悉的情况下,用心去优化才能做到最优,优化后的效果也是立竿见影的!

 
先读写分离、再垂直拆分、再水平拆分!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/113572.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • presto timestmp使用

    presto timestmp使用

    2021年11月27日
    55
  • ireport(FusionChartsFree)

    ireport(FusionChartsFree)ireport(FusionChartsFree)留下脚印以备下次之需

    2022年7月14日
    22
  • python3换行符_python的换行符

    python3换行符_python的换行符广告关闭提供包括云服务器,云数据库在内的50+款云计算产品。打造一站式的云产品试用服务,助力开发者和企业零门槛上云。我想匹配以下内容:参考编号8号长任何角色,任何次数新队任何角色,任何次数新队任何角色,任何次数新队任何角色,任何次数新队任何角色,任何次数我的python代码是:forminre.findall({8}.*n.*n.*n.*n.*,l,re.dot…

    2022年5月23日
    70
  • php 正则表达式怎么匹配标签里面的style?

    php 正则表达式怎么匹配标签里面的style?

    2021年10月15日
    72
  • 笛卡尔积图解[通俗易懂]

    笛卡尔积图解[通俗易懂]所谓笛卡尔积,通俗点说就是指包含两个集合中任意取出两个元素构成的组合的集合. MySQL的多表查询(笛卡尔积原理)先确定数据要用到哪些表。 将多个表先通过笛卡尔积变成一个表。 然后去除不符合逻辑的数据(根据两个表的关系去掉)。 最后当做是一个虚拟表一样来加上条件即可。 应用场合在某些情况下用于寻找连续日期中残缺的数据,可以先用笛卡尔积做一个排列组合,然后和目标表进行关联,以查询…

    2022年7月11日
    26
  • [python]异步 async

    [python]异步 async#-*-encoding:utf-8-*-“””ankus@ModifyTime@Author@Version@Description————————————–2021/12/314:02xlgui21.0asynciopy3.8异步IO:就是发起一个IO操作(如:网络请求,文件读写等),这些操作一般是比较耗时的,不用等待它结束,可以继续做

    2022年7月27日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号