Java中,为什么byte类型的取值范围为-128~127?

Java中,为什么byte类型的取值范围为-128~127?在学习Java基础语法的时候,初学者的我们可能都会有这么一个疑问为什么byte类型的取值范围为什么是[-128,127]而不是[-127,127]。01111111表示最大的数值:127,因为第一位是符号位,所以11111111应该是最小的数值:-127,不是这样才对?在解释这个问题之前我们需要了解几个概念:机器数、真值、原码、反码、补码机器数:一个数在计算机中的二进制表示形式,叫做这个数的机器

大家好,又见面了,我是你们的朋友全栈君。

在学习Java基础语法的时候,初学者的我们可能都会有这么一个疑问为什么byte类型的取值范围为什么是[-128,127]而不是[-127,127]。01111111表示最大的数值:127,因为第一位是符号位,所以11111111应该是最小的数值:-127,不是这样才对?


在解释这个问题之前我们需要了解几个概念:机器数、真值、原码、反码、补码

机器数:

一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1。

比如:十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。那么,这里的 00000011 和 10000011 就是机器数。

真值:
因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1

原码:
原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

[+1]原 = 0000 0001
[-1]原 = 1000 0001
第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:[1111 1111 , 0111 1111]
即[-127 , 127]。原码是人脑最容易理解和计算的表示方式.

反码:
反码的表示方法是:正数的反码是其本身,负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。

[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

补码:
补码的表示方法是:

正数的补码就是其本身

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补
[-1] = [10000001]原 = [11111110]反 = [11111111]补

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

正数:
正数的反码和补码都与原码相同
负数:
负数的反码、补码与原码不同,负数的反码:原码中除去符号位,其他的数值位取反,0变1,1变0。负数的补码:反码+1

例如:

这里写图片描述

解释:为什么byte类型的取值范围为-128~127?

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

  [+1] = [00000001]原 = [00000001]反 = [00000001]补

  所以不需要过多解释. 但是对于负数:

  [-1] = [10000001]原 = [11111110]反 = [11111111]补

  可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

  首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别”符号位”显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

  于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

  计算十进制的表达式: 1-1=0

  1 – 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

  如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

  为了解决原码做减法的问题, 出现了反码:

  计算十进制的表达式: 1-1=0

  1 – 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

  发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在”0”这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.

  于是补码的出现, 解决了0的符号以及两个编码的问题:

  1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 =[0000 0001]反 + [1111 1110]反= [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原

这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:

  (-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补

  -1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的),使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127]。

因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值。

参考博客:
GOFighting
byte类型数据范围分析

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/148021.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 3极管原理图_二极管图解

    3极管原理图_二极管图解“晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件”在电子元件家族中,三极管属于半导体主动元件中的分立元件。广义上,三极管有多种,常见如下图所示。狭义上,三极管指双极型三极管,是最基础最通用的三极管。本文所述的是狭义三极管,它有很多别称:三极管的发明晶体三极管出现之前是真空电子三极管在电子电路中以放大、开关功能控制电流。真空电子管存在笨重、耗能、反应慢等缺点。二战时,军事上急切需要一种稳定可靠、快速灵敏的电信号放大元件,研究成果在二战

    2022年10月7日
    4
  • manjaro 安装分区以及配置方案

    manjaro 安装分区以及配置方案制作启动盘windows下制作启动盘推荐在windows下使用Rufus工具来制作启动盘,做成启动盘后还能用来存储文件linux下制作启动盘使用dd命令,使用该命令做成启动盘后U盘就不能用来存储文件了,具体命令格式可以看wikihttps://wiki.manjaro.org/index.php?title=Burn_an_ISO_File#Using_t…

    2022年6月7日
    70
  • vmware找不到vmx文件_虚拟机重启后文件丢失

    vmware找不到vmx文件_虚拟机重启后文件丢失在使用Vmware的过程中,不小心删除了vmx文件,导致Vmware无法启动。经过上网搜查资料,找到解决办法。vmx只是一个对Vmware文件的简单描述性文件,并不包含任何实质性信息,信息主要包含在vmdk和vmxf文件中。对于Ubuntu虚拟机,用记事本创建空白文件,在其中输入下面内容并保存为ubuntu.vmx即可。(其中加粗的部分是需要修改的内容,包括vmdk文件的

    2025年6月12日
    8
  • addrule android用法,RelativeLayout.LayoutParams 使用addRule失效的问题解决办法[通俗易懂]

    addrule android用法,RelativeLayout.LayoutParams 使用addRule失效的问题解决办法[通俗易懂]Buttonbtn1;btn1.setId(1001);intwidth;//layoutwidth;intbtnWidth;//btnwidth;intbtnHeight;//btnheight;…….RelativeLayout.LayoutParamsp=newRelativeLayout.LayoutParams(btnWidth,btnHeight…

    2022年7月17日
    19
  • JAVA高并发编程「建议收藏」

    JAVA高并发编程「建议收藏」synchronized关键字同步方法同步代码块锁的底层实现锁的种类volatile关键字wait¬ifyAtomicXxx类型组CountDownLatch门闩锁的重入ReentrantLock同步容器Map/SetListQueueThreadPool&ExecutorExecutorExecutorServiceFuture…

    2022年5月19日
    34
  • 国产Linux操作系统(深度系统)增加了微软Microsoft Edge浏览器(Linux版本)

    国产Linux操作系统(深度系统)增加了微软Microsoft Edge浏览器(Linux版本)深度商店应用更新记录汇总(2021-11)新增应用序号 状态 应用分类 应用名称 应用类型 1 上架 网络应用 迪普SSLVPN Linux 2 上架 影像编辑 浩辰CAD2022 Linux 3 上架 影像编辑 中望建筑CAD设计软件(ForLinux)V2022 Linux 4 上架 效率办公 腾讯文档 Linux 5 上架 系统工具

    2022年10月5日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号