【深度学习】【语义分割】ASPP

【深度学习】【语义分割】ASPPASPP空洞空间卷积池化金字塔(atrousspatialpyramidpooling(ASPP))对所给定的输入以不同采样率的空洞卷积并行采样,相当于以多个比例捕捉图像的上下文。上图为deeplabv2的ASPP模块,deeplabv3中向ASPP中添加了BN层,其中空洞卷积的rate的意思是在普通卷积的基础上,相邻权重之间的间隔为rate-1,普通卷积的rate默认为1,所以…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

ASPP

空洞空间卷积池化金字塔(atrous spatial pyramid pooling (ASPP))对所给定的输入以不同采样率的空洞卷积并行采样,相当于以多个比例捕捉图像的上下文。
deeplab v2的ASPP

上图为deeplab v2的ASPP模块,deeplabv3中向ASPP中添加了BN层,其中空洞卷积的rate的意思是在普通卷积的基础上,相邻权重之间的间隔为rate-1, 普通卷积的rate默认为1,所以空洞卷积的实际大小为 k + ( k − 1 ) ( r a t e − 1 ) k+(k-1)(rate-1) k+(k1)(rate1),其中k为原始卷积核大小。

输出大小如何计算?
在这里插入图片描述

问题:当rate接近feature map大小时, 3 × 3 3\times3 3×3滤波器不是捕获全图像上下文,而是退化为简单的 1 × 1 1\times1 1×1滤波器,只有滤波器中心起作用。

改进:Concat( 1 × 1 1\times 1 1×1卷积 , 3个 3 × 3 3\times 3 3×3空洞卷积 +,pooled image feature)并且每个卷积核都有256个且都有BN层。
在这里插入图片描述

#without bn version
class ASPP(nn.Module):
    def __init__(self, in_channel=512, depth=256):
        super(ASPP,self).__init__()
        self.mean = nn.AdaptiveAvgPool2d((1, 1)) #(1,1)means ouput_dim
        self.conv = nn.Conv2d(in_channel, depth, 1, 1)
        self.atrous_block1 = nn.Conv2d(in_channel, depth, 1, 1)
        self.atrous_block6 = nn.Conv2d(in_channel, depth, 3, 1, padding=6, dilation=6)
        self.atrous_block12 = nn.Conv2d(in_channel, depth, 3, 1, padding=12, dilation=12)
        self.atrous_block18 = nn.Conv2d(in_channel, depth, 3, 1, padding=18, dilation=18)
        self.conv_1x1_output = nn.Conv2d(depth * 5, depth, 1, 1)
 
    def forward(self, x):
        size = x.shape[2:]
 
        image_features = self.mean(x)
        image_features = self.conv(image_features)
        image_features = F.upsample(image_features, size=size, mode='bilinear')
 
        atrous_block1 = self.atrous_block1(x)
        atrous_block6 = self.atrous_block6(x)
        atrous_block12 = self.atrous_block12(x)
        atrous_block18 = self.atrous_block18(x)
 
        net = self.conv_1x1_output(torch.cat([image_features, atrous_block1, atrous_block6,
                                              atrous_block12, atrous_block18], dim=1))
        return net

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/171645.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 主成分分析(PCA)原理详解「建议收藏」

    “微信公众号”本文同步更新在我的微信公众号里,地址:https://mp.weixin.qq.com/s/Xt1vLQfB20rTmtLjiLsmww本文同步更新在我的知乎专栏里面:主成分分析(PCA)原理详解-Microstrong的文章-知乎https://zhuanlan.zhihu.com/p/377770741.相关背景在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观…

    2022年4月16日
    33
  • matlab差值报错,matlab插值介绍「建议收藏」

    matlab差值报错,matlab插值介绍「建议收藏」1、一维插值:已知离散点上的数据集,即已知在点集X=上的函数值Y=,构造一个解析函数(其图形为一曲线)通过这些点,并能够求出这些点之间的值,这一过程称为一维插值。MATLAB命令:yi=interp1(X,Y,xi,method)该命令用指定的算法找出一个一元函数,然后以给出处的值。xi可以是一个标量,也可以是一个向量,是向量时,必须单调,method可以下列方法之一:‘neares…

    2022年5月29日
    32
  • 海量数据存储技术(cpu制造瓶颈)

    对于海量数据的处理随着互联网应用的广泛普及,海量数据的存储和访问成为了系统设计的瓶颈问题。对于一个大型的互联网应用,每天几十亿的PV无疑对数据库造成了相当高的负载。对于系统的稳定性和扩展性造成了极大的问题。通过数据切分来提高网站性能,横向扩展数据层已经成为架构研发人员首选的方式。水平切分数据库:可以降低单台机器的负载,同时最大限度的降低了宕机造成的损失;负载均衡策略:可以降低单台机器的访问负载,降…

    2022年4月14日
    52
  • PhpStorm 2021.2 x64 激活码(已测有效)

    PhpStorm 2021.2 x64 激活码(已测有效),https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月14日
    56
  • luaJIT指令集介绍[通俗易懂]

    luaJIT指令集介绍[通俗易懂]luaJIT指令集介绍—————-目录—————(a)相关ByteCode定义介绍(b)lj_bc.h和lj_bc.c(1)字节码format简介(2)操作数的相关范围定义,和部分定义常量(3)通过掩码镜像,来获取相对应区域的值(4)通过掩码镜像,来设置相对应区域的值(5)合成实现操作符(6)关于字节码指令的定义

    2022年10月7日
    4
  • 计算机系统构成及硬件基础知识

    目录数值转换R进制转十进制使用按权展开法。十进制转R进制使用短除法。二进制转八进制。二进制转十六进制。数的表示原码/反码/补码/移码浮点数运算计算机的基本组成计算机体系结构计算机体系软硬件的层次结构计算机的一些基本概念本章主要包括以下部分:数值转换 数的表示 计算机体系结构 计算机的组成 寻址方式 校验码数值转换R进制转十进制…

    2022年4月8日
    158

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号